BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28040867)

  • 1. A validated model of passive skeletal muscle to predict force and intramuscular pressure.
    Wheatley BB; Odegard GM; Kaufman KR; Haut Donahue TL
    Biomech Model Mechanobiol; 2017 Jun; 16(3):1011-1022. PubMed ID: 28040867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Skeletal Muscle Stress and Intramuscular Pressure: A Whole Muscle Active-Passive Approach.
    Wheatley BB; Odegard GM; Kaufman KR; Haut Donahue TL
    J Biomech Eng; 2018 Aug; 140(8):0810061-8. PubMed ID: 30003256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element model of intramuscular pressure during isometric contraction of skeletal muscle.
    Jenkyn TR; Koopman B; Huijing P; Lieber RL; Kaufman KR
    Phys Med Biol; 2002 Nov; 47(22):4043-61. PubMed ID: 12476981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A visco-hyperelastic model for skeletal muscle tissue under high strain rates.
    Lu YT; Zhu HX; Richmond S; Middleton J
    J Biomech; 2010 Sep; 43(13):2629-32. PubMed ID: 20566197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between active and passive isometric force and intramuscular pressure in the isolated rabbit tibialis anterior muscle.
    Davis J; Kaufman KR; Lieber RL
    J Biomech; 2003 Apr; 36(4):505-12. PubMed ID: 12600341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive nonlinear elastic behaviour of skeletal muscle: experimental results and model formulation.
    Calvo B; Ramírez A; Alonso A; Grasa J; Soteras F; Osta R; Muñoz MJ
    J Biomech; 2010 Jan; 43(2):318-25. PubMed ID: 19857866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensor Anchoring Improves the Correlation Between Intramuscular Pressure and Muscle Tension in a Rabbit Model.
    O'Connor SM; Kaufman KR; Ward SR; Lieber RL
    Ann Biomed Eng; 2021 Feb; 49(2):912-921. PubMed ID: 33001290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametric study of a Hill-type hyperelastic skeletal muscle model.
    Lu YT; Beldie L; Walker B; Richmond S; Middleton J
    Proc Inst Mech Eng H; 2011 May; 225(5):437-47. PubMed ID: 21755774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive transverse mechanical properties of skeletal muscle under in vivo compression.
    Bosboom EM; Hesselink MK; Oomens CW; Bouten CV; Drost MR; Baaijens FP
    J Biomech; 2001 Oct; 34(10):1365-8. PubMed ID: 11522318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully non-linear hyper-viscoelastic modeling of skeletal muscle in compression.
    Wheatley BB; Pietsch RB; Haut Donahue TL; Williams LN
    Comput Methods Biomech Biomed Engin; 2016; 19(11):1181-9. PubMed ID: 26652761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental and computational investigation of the effects of volumetric boundary conditions on the compressive mechanics of passive skeletal muscle.
    Vaidya AJ; Wheatley BB
    J Mech Behav Biomed Mater; 2020 Feb; 102():103526. PubMed ID: 31877528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle.
    Grasa J; Ramírez A; Osta R; Muñoz MJ; Soteras F; Calvo B
    Biomech Model Mechanobiol; 2011 Oct; 10(5):779-87. PubMed ID: 21127938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlating Skeletal Muscle Output Force and Intramuscular Pressure Via a Three-Dimensional Finite Element Muscle Model.
    El Bojairami I; Driscoll M
    J Biomech Eng; 2022 Apr; 144(4):. PubMed ID: 34729583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C; Vogl TJ; Silber G
    J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A case for poroelasticity in skeletal muscle finite element analysis: experiment and modeling.
    Wheatley BB; Odegard GM; Kaufman KR; Haut Donahue TL
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):598-601. PubMed ID: 27957877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling.
    Van Loocke M; Lyons CG; Simms CK
    J Biomech; 2008; 41(7):1555-66. PubMed ID: 18396290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between isometric force and intramuscular pressure in rabbit tibialis anterior muscle with an intact anterior compartment.
    Winters TM; Sepulveda GS; Cottler PS; Kaufman KR; Lieber RL; Ward SR
    Muscle Nerve; 2009 Jul; 40(1):79-85. PubMed ID: 19533654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle tensile strain dependence: Hyperviscoelastic nonlinearity.
    Wheatley BB; Morrow DA; Odegard GM; Kaufman KR; Haut Donahue TL
    J Mech Behav Biomed Mater; 2016 Jan; 53():445-454. PubMed ID: 26409235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Société de Biomécanique Young Investigator Award 2021: Numerical investigation of the time-dependent stress-strain mechanical behaviour of skeletal muscle tissue in the context of pressure ulcer prevention.
    Lavigne T; Sciumè G; Laporte S; Pillet H; Urcun S; Wheatley B; Rohan PY
    Clin Biomech (Bristol, Avon); 2022 Mar; 93():105592. PubMed ID: 35151107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: linked fiber-matrix mesh model.
    Yucesoy CA; Koopman BH; Huijing PA; Grootenboer HJ
    J Biomech; 2002 Sep; 35(9):1253-62. PubMed ID: 12163314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.