These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28040928)

  • 1. Characterization of electrical noise limits in ultra-stable laser systems.
    Zhang J; Shi XH; Zeng XY; Lü XL; Deng K; Lu ZH
    Rev Sci Instrum; 2016 Dec; 87(12):123105. PubMed ID: 28040928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subhertz linewidth laser by locking to a fiber delay line.
    Dong J; Hu Y; Huang J; Ye M; Qu Q; Li T; Liu L
    Appl Opt; 2015 Feb; 54(5):1152-6. PubMed ID: 25968034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 193-mHz beat linewidth of frequency-stabilized laser-diode-pumped Nd:YAG ring lasers.
    Uehara N; Ueda K
    Opt Lett; 1993 Apr; 18(7):505-7. PubMed ID: 19802182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active frequency stabilization of a 1.062-microm, Nd:GGG, diode-laser-pumped nonplanar ring oscillator to less than 3 Hz of relative linewidth.
    Day T; Gustafson EK; Byer RL
    Opt Lett; 1990 Feb; 15(4):221-3. PubMed ID: 19759763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase noise characterization of sub-hertz linewidth lasers via digital cross correlation.
    Xie X; Bouchand R; Nicolodi D; Lours M; Alexandre C; Le Coq Y
    Opt Lett; 2017 Apr; 42(7):1217-1220. PubMed ID: 28362733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum cascade laser-based mid-IR frequency metrology system with ultra-narrow linewidth and 1  ×  10⁻¹³-level frequency instability.
    Hansen MG; Magoulakis E; Chen QF; Ernsting I; Schiller S
    Opt Lett; 2015 May; 40(10):2289-92. PubMed ID: 26393721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity.
    Lewoczko-Adamczyk W; Pyrlik C; Häger J; Schwertfeger S; Wicht A; Peters A; Erbert G; Tränkle G
    Opt Express; 2015 Apr; 23(8):9705-9. PubMed ID: 25969008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sub-kilohertz laser linewidth narrowing using polarization spectroscopy.
    Torrance JS; Sparkes BM; Turner LD; Scholten RE
    Opt Express; 2016 May; 24(11):11396-406. PubMed ID: 27410068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Frequency-Doubled 1.5- m Lasers for High-Performance Rb Clocks.
    Almat N; Moreno W; Pellaton M; Gruet F; Affolderbach C; Mileti G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):919-926. PubMed ID: 29856708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An agile laser with ultra-low frequency noise and high sweep linearity.
    Jiang H; Kéfélian F; Lemonde P; Clairon A; Santarelli G
    Opt Express; 2010 Feb; 18(4):3284-97. PubMed ID: 20389336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Narrow-linewidth chirped frequency comb from a frequency-shifted feedback Ti:sapphire laser seeded by a phase-modulated single-frequency fiber laser.
    Brandl MF; Mücke OD
    Opt Lett; 2010 Dec; 35(24):4223-5. PubMed ID: 21165144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultimate linewidth reduction of a semiconductor laser frequency-stabilized to a Fabry-Pérot interferometer.
    Bahoura M; Clairon A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1414-21. PubMed ID: 14682624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-noise, tunable diode laser for ultra-high-resolution spectroscopy.
    Döringshoff K; Ernsting I; Rinkleff RH; Schiller S; Wicht A
    Opt Lett; 2007 Oct; 32(19):2876-8. PubMed ID: 17909603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absolute frequency stability of a diode-laser-pumped Nd:YAG laser stabilized to a high-finesse optical cavity.
    Nakagawa K; Shelkovnikov AS; Katsuda T; Ohtsu M
    Appl Opt; 1994 Sep; 33(27):6383-6. PubMed ID: 20941174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherent photo-thermal noise cancellation in a dual-wavelength optical cavity for narrow-linewidth laser frequency stabilisation.
    Dawel F; Wilzewski A; Herbers S; Pelzer L; Kramer J; Hild MB; Dietze K; Krinner L; Spethmann NCH; Schmidt PO
    Opt Express; 2024 Feb; 32(5):7276-7288. PubMed ID: 38439412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noise characterization of an ultra-stable laser for optical clocks.
    Wang Z; Ma Z; Wei W; Chang J; Zhang J; Wu Q; Yuan W; Deng K; Lu Z; Zhang J
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38690980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase noise analysis of a 10 Watt Yb-doped fibre amplifier seeded by a 1-Hz-linewidth laser.
    Ricciardi I; Mosca S; Maddaloni P; Santamaria L; De Rosa M; De Natale P
    Opt Express; 2013 Jun; 21(12):14618-26. PubMed ID: 23787649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power-area method to precisely estimate laser linewidth from its frequency-noise spectrum.
    Zhou Q; Qin J; Xie W; Liu Z; Tong Y; Dong Y; Hu W
    Appl Opt; 2015 Oct; 54(28):8282-9. PubMed ID: 26479597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamental frequency noise properties of extended cavity erbium fiber lasers.
    Cranch GA; Miller GA
    Opt Lett; 2011 Mar; 36(6):906-8. PubMed ID: 21403724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact, thermal-noise-limited reference cavity for ultra-low-noise microwave generation.
    Davila-Rodriguez J; Baynes FN; Ludlow AD; Fortier TM; Leopardi H; Diddams SA; Quinlan F
    Opt Lett; 2017 Apr; 42(7):1277-1280. PubMed ID: 28362748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.