These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 2804103)

  • 1. Modulation of red blood cell sugar transport by lyso-lipid.
    Naderi S; Carruthers A; Melchior DL
    Biochim Biophys Acta; 1989 Oct; 985(2):173-83. PubMed ID: 2804103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in red blood cell sugar transport by nanomolar concentrations of alkyl lysophospholipid.
    Melchior DL; Carruthers A; Makriyannis A; Duclos RI; Abdel-Mageed OH
    Biochim Biophys Acta; 1990 Sep; 1028(1):1-8. PubMed ID: 2207116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human erythrocyte hexose transporter activity is governed by bilayer lipid composition in reconstituted vesicles.
    Carruthers A; Melchior DL
    Biochemistry; 1984 Dec; 23(26):6901-11. PubMed ID: 6543323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct evidence for ATP modulation of sugar transport in human erythrocyte ghosts.
    Hebert DN; Carruthers A
    J Biol Chem; 1986 Aug; 261(22):10093-9. PubMed ID: 3733703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous asymmetric kinetics of human red cell hexose transfer: role of cytosolic adenosine 5'-triphosphate.
    Carruthers A
    Biochemistry; 1986 Jun; 25(12):3592-602. PubMed ID: 3718945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GLUT-1 mediation of rapid glucose transport in dolphin (Tursiops truncatus) red blood cells.
    Craik JD; Young JD; Cheeseman CI
    Am J Physiol; 1998 Jan; 274(1):R112-9. PubMed ID: 9458906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitions of sugar transport produced by ligands binding at opposite sides of the membrane. Evidence for simultaneous occupation of the carrier by maltose and cytochalasin B.
    Carruthers A; Helgerson AL
    Biochemistry; 1991 Apr; 30(16):3907-15. PubMed ID: 2018762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of bilayer cholesterol on human erythrocyte hexose transport protein activity in synthetic lecithin bilayers.
    Connolly TJ; Carruthers A; Melchior DL
    Biochemistry; 1985 Jun; 24(12):2865-73. PubMed ID: 4040391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High affinity cytochalasin B binding to red cell membrane proteins which are unrelated to sugar transport.
    Lin S; Snyder CE
    J Biol Chem; 1977 Aug; 252(15):5464-71. PubMed ID: 407226
    [No Abstract]   [Full Text] [Related]  

  • 11. Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes.
    Albert SG
    Biochem Int; 1984 Jul; 9(1):93-103. PubMed ID: 6541046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochalasin B binding sites and glucose transport carrier in human erythrocyte ghosts.
    Jung CY; Rampal AL
    J Biol Chem; 1977 Aug; 252(15):5456-63. PubMed ID: 885863
    [No Abstract]   [Full Text] [Related]  

  • 13. Quench-flow analysis reveals multiple phases of GluT1-mediated sugar transport.
    Blodgett DM; Carruthers A
    Biochemistry; 2005 Feb; 44(7):2650-60. PubMed ID: 15709778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites.
    Sultzman LA; Carruthers A
    Biochemistry; 1999 May; 38(20):6640-50. PubMed ID: 10350483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rapid method of reconstituting human erythrocyte sugar transport proteins.
    Carruthers A; Melchior DL
    Biochemistry; 1984 Jun; 23(12):2712-8. PubMed ID: 6540598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible in vitro decrease of L-tyrosine and L-tryptophan influx across the human erythrocyte membrane induced by cytochalasin B, the specific inhibitor of D-glucose transport.
    Widmer J; Raffin Y; Gaillard JM; Bovier P; Tissot R
    Neuropsychobiology; 1990-1991; 24(2):67-73. PubMed ID: 2134113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of cytochalasins and cytochalasin B binding sites in human erythrocyte membranes.
    Rampal AL; Pinkofsky HB; Jung CY
    Biochemistry; 1980 Feb; 19(4):679-83. PubMed ID: 7356953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochalasin B binding proteins in human erythrocyte membranes. Modulation of glucose sensitivity by site interaction and partial solubilization of binding activities.
    Pinkofsky HB; Rampal AL; Cowden MA; Jung CY
    J Biol Chem; 1978 Jul; 253(14):4930-7. PubMed ID: 670170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The monosaccharide transport system of the human erythrocyte. Solubilization and characterization on the basis of cytochalasin B binding.
    Zoccoli MA; Baldwin SA; Lienhard GE
    J Biol Chem; 1978 Oct; 253(19):6923-30. PubMed ID: 690133
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of bilayer cholesterol content on reconstituted human erythrocyte sugar transporter activity.
    Connolly TJ; Carruthers A; Melchior DL
    J Biol Chem; 1985 Mar; 260(5):2617-20. PubMed ID: 4038706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.