These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 2804114)

  • 1. Evidence that electrofusion yield is controlled by biologically relevant membrane factors.
    Sowers AE
    Biochim Biophys Acta; 1989 Nov; 985(3):334-8. PubMed ID: 2804114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrofusion of dissimilar membrane fusion partners depends on additive contributions from each of the two different membranes.
    Sowers AE
    Biochim Biophys Acta; 1989 Nov; 985(3):339-42. PubMed ID: 2804115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and mechanism of cell membrane electrofusion.
    Abidor IG; Sowers AE
    Biophys J; 1992 Jun; 61(6):1557-69. PubMed ID: 1617138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low concentrations of macromolecular solutes significantly affect electrofusion yield in erythrocyte ghosts.
    Sowers AE
    Biochim Biophys Acta; 1990 Jun; 1025(2):247-51. PubMed ID: 2364081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct mechanical relaxation components in pairs of erythrocyte ghosts undergoing fusion.
    Wu Y; Sjodin RA; Sowers AE
    Biophys J; 1994 Jan; 66(1):114-9. PubMed ID: 8130330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrofusion between heterogeneous-sized mammalian cells in a pellet: potential applications in drug delivery and hybridoma formation.
    Li LH; Hensen ML; Zhao YL; Hui SW
    Biophys J; 1996 Jul; 71(1):479-86. PubMed ID: 8804630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of electric field threshold for electrofusion of erythrocyte ghosts. Comparison of pulse-first and contact-first protocols.
    Wu Y; Montes JG; Sjodin RA
    Biophys J; 1992 Mar; 61(3):810-5. PubMed ID: 1504251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A delay in membrane fusion: lag times observed by fluorescence microscopy of individual fusion events induced by an electric field pulse.
    Dimitrov DS; Sowers AE
    Biochemistry; 1990 Sep; 29(36):8337-44. PubMed ID: 2174698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane microextension: a possible mechanism for establishing molecular contact in electrofusion.
    Biswas S; Guha SK
    Bioelectrochem Bioenerg; 1999 May; 48(2):435-40. PubMed ID: 10379565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane skeleton restraint of surface shape change during fusion of erythrocyte membranes: evidence from use of osmotic and dielectrophoretic microforces as probes.
    Sowers AE
    Biophys J; 1995 Dec; 69(6):2507-16. PubMed ID: 8599657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane fusion without cytoplasmic fusion (hemi-fusion) in erythrocytes that are subjected to electrical breakdown.
    Song LY; Ahkong QF; Georgescauld D; Lucy JA
    Biochim Biophys Acta; 1991 May; 1065(1):54-62. PubMed ID: 2043651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of cell pellets: II. Osmotic properties, electroporation, and related phenomena: membrane interactions.
    Abidor IG; Li LH; Hui SW
    Biophys J; 1994 Jul; 67(1):427-35. PubMed ID: 7522598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Movement of a fluorescent lipid label from a labeled erythrocyte membrane to an unlabeled erythrocyte membrane following electric-field-induced fusion.
    Sowers AE
    Biophys J; 1985 Apr; 47(4):519-25. PubMed ID: 3986281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that the spectrin network and a nonosmotic force control the fusion product morphology in electrofused erythrocyte ghosts.
    Chernomordik LV; Sowers AE
    Biophys J; 1991 Nov; 60(5):1026-37. PubMed ID: 1760502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sendai virus fusion activity as modulated by target membrane components.
    Nunes-Correia I; Ramalho-Santos J; Pedroso de Lima MC
    Biosci Rep; 1998 Apr; 18(2):59-68. PubMed ID: 9743474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influenza virus-induced fusion of erythrocyte ghosts does not depend on osmotic forces.
    Herrmann A; Pritzen C; Palesch A; Groth T
    Biochim Biophys Acta; 1988 Sep; 943(3):411-8. PubMed ID: 3415984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of oscillating erythrocyte doublets after electrofusion.
    Baumann M
    Biophys J; 1999 Nov; 77(5):2602-11. PubMed ID: 10545360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple-pulse-mediated electrofusion of intact erythrocyte onto human term placental amnion.
    Biswas S; Guha SK
    Bioelectrochem Bioenerg; 1999 May; 48(2):431-4. PubMed ID: 10379564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium phosphate-induced fusion of human erythrocyte ghosts monitored by dilution of a membrane bound fluorescence probe.
    Herrmann A; Hillebrecht B
    Biomed Biochim Acta; 1991; 50(3):251-6. PubMed ID: 1719961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agents facilitating the electric field-induced fusion of intact rabbit erythrocytes.
    Haritou M; Yova D; Loukas S
    Bioelectrochemistry; 2000 Dec; 52(2):229-38. PubMed ID: 11129247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.