These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2804134)

  • 21. Kinetics of the creatine kinase reaction in neonatal rabbit heart: an empirical analysis of the rate equation.
    McAuliffe JJ; Perry SB; Brooks EE; Ingwall JS
    Biochemistry; 1991 Mar; 30(10):2585-93. PubMed ID: 2001348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of sea-urchin sperm motility is accompanied by an increase in the creatine kinase exchange flux.
    Dorsten FA; Wyss M; Wallimann T; Nicolay K
    Biochem J; 1997 Jul; 325 ( Pt 2)(Pt 2):411-6. PubMed ID: 9230121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Age-related changes in swine brain creatine kinase-catalyzed 31P exchange measured in vivo using 31P NMR magnetization transfer.
    Corbett RJ; Laptook AR
    J Cereb Blood Flow Metab; 1994 Nov; 14(6):1070-7. PubMed ID: 7929650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and accumulation of an extremely stable high-energy phosphate compound by muscle, heart, and brain of animals fed the creatine analog, 1-carboxyethyl-2-iminoimidazolidine (homocyclocreatine).
    Roberts JJ; Walker JB
    Arch Biochem Biophys; 1983 Feb; 220(2):563-71. PubMed ID: 6824340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of pH and free Mg2+ on the Keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions.
    Lawson JW; Veech RL
    J Biol Chem; 1979 Jul; 254(14):6528-37. PubMed ID: 36398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 31P NMR measurements of the ADP concentration in yeast cells genetically modified to express creatine kinase.
    Brindle K; Braddock P; Fulton S
    Biochemistry; 1990 Apr; 29(13):3295-302. PubMed ID: 2185836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart.
    Van Dorsten FA; Nederhoff MG; Nicolay K; Van Echteld CJ
    Am J Physiol; 1998 Oct; 275(4):H1191-9. PubMed ID: 9746466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics of irreversible inhibition of creatine kinase during modification by o-phthaldehyde.
    Wang ZF; Xu YK; Zhou HM
    Enzyme Protein; 1994-1995; 48(1):1-9. PubMed ID: 7787965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for an associative mechanism in the phosphoryl transfer step catalyzed by rabbit muscle creatine kinase.
    Lowe G; Sproat BS
    J Biol Chem; 1980 May; 255(9):3944-51. PubMed ID: 7372661
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. 31P-NMR studies.
    Kupriyanov VV; Ya Steinschneider A; Ruuge EK; Kapel'ko VI; Yu Zueva M; Lakomkin VL; Smirnov VN; Saks VA
    Biochim Biophys Acta; 1984 Dec; 805(4):319-31. PubMed ID: 6509089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR.
    Yoshizaki K; Watari H; Radda GK
    Biochim Biophys Acta; 1990 Feb; 1051(2):144-50. PubMed ID: 2310769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Is creatine phosphokinase in equilibrium in skeletal muscle?
    Brown TR
    Fed Proc; 1982 Feb; 41(2):174-5. PubMed ID: 7060742
    [No Abstract]   [Full Text] [Related]  

  • 33. Kinetics of creatine phosphokinase and adenylate kinase. A two-dimensional NMR analysis.
    Kantor HL; Ferretti JA; Balaban RS
    Biochim Biophys Acta; 1984 Sep; 789(2):128-35. PubMed ID: 6089892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyclocreatine Transport by SLC6A8, the Creatine Transporter, in HEK293 Cells, a Human Blood-Brain Barrier Model Cell, and CCDSs Patient-Derived Fibroblasts.
    Uemura T; Ito S; Masuda T; Shimbo H; Goto T; Osaka H; Wada T; Couraud PO; Ohtsuki S
    Pharm Res; 2020 Mar; 37(3):61. PubMed ID: 32124083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic studies and effects of anions on creatine phosphokinase from skeletal muscle of rhesus monkey (Macaca mulatta).
    Chegwidden WR; Watts DC
    Biochim Biophys Acta; 1975 Nov; 410(1):99-114. PubMed ID: 77
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain creatine kinase reaction rates and reactant concentrations during seizures in developing rats.
    Holtzman D; Meyers R; Khait I; Jensen F
    Epilepsy Res; 1997 Apr; 27(1):7-11. PubMed ID: 9169286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetics of cyclocreatine and Na(+) cotransport in human breast cancer cells: mechanism of activity.
    Maril N; Degani H; Rushkin E; Sherry AD; Cohn M
    Am J Physiol; 1999 Oct; 277(4):C708-16. PubMed ID: 10516101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The activity of creatine kinase in frog skeletal muscle studied by saturation-transfer nuclear magnetic resonance.
    Gadian DG; Radda GK; Brown TR; Chance EM; Dawson MJ; Wilkie DR
    Biochem J; 1981 Jan; 194(1):215-28. PubMed ID: 6975619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 31P NMR studies of the thermodynamics and kinetics of the creatine kinase reaction.
    Eldar H; Degani H
    Magn Reson Med; 1989 Jul; 11(1):121-6. PubMed ID: 2747512
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Creatine kinase kinetics, ATP turnover, and cardiac performance in hearts depleted of creatine with the substrate analogue beta-guanidinopropionic acid.
    Shoubridge EA; Jeffry FM; Keogh JM; Radda GK; Seymour AM
    Biochim Biophys Acta; 1985 Oct; 847(1):25-32. PubMed ID: 4052460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.