These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 2804165)

  • 21. Investigation of the active site of the cyanogenic beta-D-glucosidase (linamarase) from Manihot esculenta Crantz (cassava). I. Evidence for an essential carboxylate and a reactive histidine residue in a single catalytic center.
    Keresztessy Z; Kiss L; Hughes MA
    Arch Biochem Biophys; 1994 Oct; 314(1):142-52. PubMed ID: 7944386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydroperoxide-dependent hydroxylation involving "H2O2-reducible hemoprotein" in microsomes of pea seeds. A new type enzyme acting on hydroperoxide and a physiological role of seed lipoxygenase.
    Ishimaru A; Yamazaki I
    J Biol Chem; 1977 Sep; 252(17):6118-24. PubMed ID: 19466
    [No Abstract]   [Full Text] [Related]  

  • 23. [Regulation of the catalytic activity of the monooxygenase enzyme system depending of the substrate structure and phospholipid composition of the model membrane].
    Kiselev PA; Garda G; Finch SA; Stir A; Khatyleva SIu; Akhrem AA
    Biokhimiia; 1990 Nov; 55(11):2058-71. PubMed ID: 2085619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitric oxide production by activated human neutrophils exposed to sodium azide and hydroxylamine: the role of oxygen radicals.
    Markert M; Carnal B; Mauël J
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1245-9. PubMed ID: 8147866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Self-inactivation of cytochrome P-450 in the catalytic cycle].
    Karuzina II; Bachmanova GI; Archakov AI
    Vestn Ross Akad Med Nauk; 1995; (2):17-29. PubMed ID: 7756927
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Substrate reduction and oxygen activation during microsomal metabolism of quinones].
    Sushkov DG; Rumiantseva GV; Vaĭner LM
    Biokhimiia; 1987 Nov; 52(11):1898-906. PubMed ID: 2830916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain.
    Murataliev MB; Feyereisen R
    Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment.
    Baas BJ; Denisov IG; Sligar SG
    Arch Biochem Biophys; 2004 Oct; 430(2):218-28. PubMed ID: 15369821
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effects of hydrogen peroxide on cytochrome P-450 inactivation].
    Karpetz LZ; Adrianov NV; Karuzina II; Dzhuzenova ChS; Archakov AI
    Biull Eksp Biol Med; 1988 May; 105(5):547-9. PubMed ID: 3382731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loss of rat liver microsomal cytochrome P-450 during methimazole metabolism. Role of flavin-containing monooxygenase.
    Kedderis GL; Rickert DE
    Drug Metab Dispos; 1985; 13(1):58-61. PubMed ID: 2858378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular recognition in cytochrome P-450: mechanism for the control of uncoupling reactions.
    Loida PJ; Sligar SG
    Biochemistry; 1993 Nov; 32(43):11530-8. PubMed ID: 8218220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing.
    Fucci L; Oliver CN; Coon MJ; Stadtman ER
    Proc Natl Acad Sci U S A; 1983 Mar; 80(6):1521-5. PubMed ID: 6572914
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The carbon monoxide-binding hemoprotein reducible by hydrogen peroxide in microsomal fractions of pea seeds.
    Ishimaru A; Yamazaki I
    J Biol Chem; 1977 Jan; 252(1):199-204. PubMed ID: 13063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The oxidative inactivation of cytochrome P450 in monooxygenase reactions.
    Karuzina II; Archakov AI
    Free Radic Biol Med; 1994 Jan; 16(1):73-97. PubMed ID: 8299999
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effect of hydroxylamine and sodium azide on the growth of various transplantable tumors].
    CUDKOWICZ G
    Tumori; 1955; 41(2):181-5. PubMed ID: 14396959
    [No Abstract]   [Full Text] [Related]  

  • 36. Hydroxylamine oxidoreductase from Nitrosomonas: inactivation by hydrogen peroxide.
    Hooper AB; Terry KR
    Biochemistry; 1977 Feb; 16(3):455-9. PubMed ID: 836796
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Loss of haem and haemoproteins during the generation of superoxide anion and hydrogen peroxide: a pathway not involving production of carbon monoxide.
    Cantoni L; Gibbs AH; De Matteis F
    Int J Biochem; 1981; 13(7):823-30. PubMed ID: 6268466
    [No Abstract]   [Full Text] [Related]  

  • 38. Inactivation of lignin peroxidase by phenylhydrazine and sodium azide.
    DePillis GD; Wariishi H; Gold MH; Ortiz de Montellano PR
    Arch Biochem Biophys; 1990 Jul; 280(1):217-23. PubMed ID: 2353822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Further characterization of hydrogen peroxide-dependent fatty acid alpha-hydroxylase from Sphingomonas paucimobilis.
    Matsunaga I; Yamada M; Kusunose E; Miki T; Ichihara K
    J Biochem; 1998 Jul; 124(1):105-10. PubMed ID: 9644252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanistic aspects of cytochrome P-450-hydroperoxide interactions: substituent effects on degradative pathways.
    Thompson JA; Yumibe NP
    Drug Metab Rev; 1989; 20(2-4):365-78. PubMed ID: 2680387
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.