These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 28041903)

  • 1. Exosomal MicroRNA Transport from Salivary Mesenchyme Regulates Epithelial Progenitor Expansion during Organogenesis.
    Hayashi T; Lombaert IM; Hauser BR; Patel VN; Hoffman MP
    Dev Cell; 2017 Jan; 40(1):95-103. PubMed ID: 28041903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exosomal microRNA communication between tissues during organogenesis.
    Hayashi T; Hoffman MP
    RNA Biol; 2017 Dec; 14(12):1683-1689. PubMed ID: 28816640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesenchymal MicroRNA Function Branches Out.
    Cao H; Hong L; Amendt BA
    Dev Cell; 2017 Jan; 40(1):1-2. PubMed ID: 28073007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FGF2-dependent mesenchyme and laminin-111 are niche factors in salivary gland organoids.
    Hosseini ZF; Nelson DA; Moskwa N; Sfakis LM; Castracane J; Larsen M
    J Cell Sci; 2018 Feb; 131(4):. PubMed ID: 29361536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exosomes Mediate Epithelium-Mesenchyme Crosstalk in Organ Development.
    Jiang N; Xiang L; He L; Yang G; Zheng J; Wang C; Zhang Y; Wang S; Zhou Y; Sheu TJ; Wu J; Chen K; Coelho PG; Tovar NM; Kim SH; Chen M; Zhou YH; Mao JJ
    ACS Nano; 2017 Aug; 11(8):7736-7746. PubMed ID: 28727410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurturin-containing laminin matrices support innervated branching epithelium from adult epithelial salispheres.
    Vining KH; Lombaert IMA; Patel VN; Kibbey SE; Pradhan-Bhatt S; Witt RL; Hoffman MP
    Biomaterials; 2019 Sep; 216():119245. PubMed ID: 31200143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exosome-transmitted microRNA-133b inhibited bladder cancer proliferation by upregulating dual-specificity protein phosphatase 1.
    Cai X; Qu L; Yang J; Xu J; Sun L; Wei X; Qu X; Bai T; Guo Z; Zhu Y
    Cancer Med; 2020 Aug; 9(16):6009-6019. PubMed ID: 32627968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the Ca(2+) Sensor STIM1 by Exosomal Transfer of Ebv-miR-BART13-3p is Associated with Sjögren's Syndrome.
    Gallo A; Jang SI; Ong HL; Perez P; Tandon M; Ambudkar I; Illei G; Alevizos I
    EBioMedicine; 2016 Aug; 10():216-26. PubMed ID: 27381477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT.
    Zhang X; Sai B; Wang F; Wang L; Wang Y; Zheng L; Li G; Tang J; Xiang J
    Mol Cancer; 2019 Mar; 18(1):40. PubMed ID: 30866952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EGF-receptor regulates salivary gland branching morphogenesis by supporting proliferation and maturation of epithelial cells and survival of mesenchymal cells.
    Häärä O; Koivisto T; Miettinen PJ
    Differentiation; 2009 Mar; 77(3):298-306. PubMed ID: 19272528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salivary gland development.
    Tucker AS
    Semin Cell Dev Biol; 2007 Apr; 18(2):237-44. PubMed ID: 17336109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway During Wound Healing.
    Fang S; Xu C; Zhang Y; Xue C; Yang C; Bi H; Qian X; Wu M; Ji K; Zhao Y; Wang Y; Liu H; Xing X
    Stem Cells Transl Med; 2016 Oct; 5(10):1425-1439. PubMed ID: 27388239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epithelial-mesenchymal interactions in the development of salivary glands.
    Cutler LS; Gremski W
    Crit Rev Oral Biol Med; 1991; 2(1):1-12. PubMed ID: 1912140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesenchymal miR-21 regulates branching morphogenesis in murine submandibular gland in vitro.
    Hayashi T; Koyama N; Azuma Y; Kashimata M
    Dev Biol; 2011 Apr; 352(2):299-307. PubMed ID: 21295561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RARα and RARγ reciprocally control K5
    DeSantis KA; Stabell AR; Spitzer DC; O'Keefe KJ; Nelson DA; Larsen M
    Organogenesis; 2017 Oct; 13(4):125-140. PubMed ID: 28933645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory Mechanisms Driving Salivary Gland Organogenesis.
    Hauser BR; Hoffman MP
    Curr Top Dev Biol; 2015; 115():111-30. PubMed ID: 26589923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined KIT and FGFR2b signaling regulates epithelial progenitor expansion during organogenesis.
    Lombaert IM; Abrams SR; Li L; Eswarakumar VP; Sethi AJ; Witt RL; Hoffman MP
    Stem Cell Reports; 2013; 1(6):604-19. PubMed ID: 24371813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A.
    Mao G; Zhang Z; Hu S; Zhang Z; Chang Z; Huang Z; Liao W; Kang Y
    Stem Cell Res Ther; 2018 Sep; 9(1):247. PubMed ID: 30257711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary Release of Exosomes From Astrocytes Contributes to the Increase in Neural Plasticity and Improvement of Functional Recovery After Stroke in Rats Treated With Exosomes Harvested From MicroRNA 133b-Overexpressing Multipotent Mesenchymal Stromal Cells.
    Xin H; Wang F; Li Y; Lu QE; Cheung WL; Zhang Y; Zhang ZG; Chopp M
    Cell Transplant; 2017 Feb; 26(2):243-257. PubMed ID: 27677799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNMT1 driven by mouse amniotic fluid mesenchymal stem cell exosomes improved corneal cryoinjury via inducing microRNA-33 promoter DNA hypermethylation modification in corneal epithelium cells.
    Xu W; Fei X; Cui Z; Pan D; Liu Y; Liu T
    Hum Cell; 2024 Jul; 37(4):1091-1106. PubMed ID: 38782857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.