These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 28042012)

  • 1. Biotechnological production of vanillin using immobilized enzymes.
    Furuya T; Kuroiwa M; Kino K
    J Biotechnol; 2017 Feb; 243():25-28. PubMed ID: 28042012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-yield production of vanillin from ferulic acid by a coenzyme-independent decarboxylase/oxygenase two-stage process.
    Furuya T; Miura M; Kuroiwa M; Kino K
    N Biotechnol; 2015 May; 32(3):335-9. PubMed ID: 25765579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin.
    Furuya T; Miura M; Kino K
    Chembiochem; 2014 Oct; 15(15):2248-54. PubMed ID: 25164030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient and long-term vanillin production from 4-vinylguaiacol using immobilized whole cells expressing Cso2 protein.
    Saito T; Aono R; Furuya T; Kino K
    J Biosci Bioeng; 2020 Sep; 130(3):260-264. PubMed ID: 32456985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed mutagenesis of coenzyme-independent carotenoid oxygenase CSO2 to enhance the enzymatic synthesis of vanillin.
    Yao X; Lv Y; Yu H; Cao H; Wang L; Wen B; Gu T; Wang F; Sun L; Xin F
    Appl Microbiol Biotechnol; 2020 May; 104(9):3897-3907. PubMed ID: 32130469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroanalysis may be used in the vanillin biotechnological production.
    Giraud W; Mirabel M; Comtat M
    Appl Biochem Biotechnol; 2014 Feb; 172(4):1953-63. PubMed ID: 24307140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotechnological and molecular approaches for vanillin production: a review.
    Kaur B; Chakraborty D
    Appl Biochem Biotechnol; 2013 Feb; 169(4):1353-72. PubMed ID: 23306890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of vanillin by different microorganisms: a review.
    Ma Q; Liu L; Zhao S; Huang Z; Li C; Jiang S; Li Q; Gu P
    World J Microbiol Biotechnol; 2022 Jan; 38(3):40. PubMed ID: 35018518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of the vanillin dehydrogenase YfmT in Bacillus subtilis 3NA.
    Graf N; Wenzel M; Altenbuchner J
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3511-21. PubMed ID: 26658822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid degradation of ferulic acid via 4-vinylguaiacol and vanillin by a newly isolated strain of bacillus coagulans.
    Karmakar B; Vohra RM; Nandanwar H; Sharma P; Gupta KG; Sobti RC
    J Biotechnol; 2000 Jul; 80(3):195-202. PubMed ID: 10949310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering a coenzyme-independent dioxygenase for one-step production of vanillin from ferulic acid.
    Fujimaki S; Sakamoto S; Shimada S; Kino K; Furuya T
    Appl Environ Microbiol; 2024 Jun; 90(6):e0023324. PubMed ID: 38727223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of isoeugenol via isoeugenol-diol by a newly isolated strain of Bacillus subtilis HS8.
    Zhang Y; Xu P; Han S; Yan H; Ma C
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):771-9. PubMed ID: 16944134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distal mutations enhance efficiency of free and immobilized NOV1 dioxygenase for vanillin synthesis.
    De Simone M; Alonso-Cotchico L; Lucas MF; Brissos V; Martins LO
    J Biotechnol; 2024 Aug; 391():92-98. PubMed ID: 38880386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HKUST-1 as a Heterogeneous Catalyst for the Synthesis of Vanillin.
    Yépez R; Illescas JF; Gijón P; Sánchez-Sánchez M; González-Zamora E; Santillan R; Álvarez JR; Ibarra IA; Aguilar-Pliego J
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27501027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol.
    Plaggenborg R; Overhage J; Loos A; Archer JA; Lessard P; Sinskey AJ; Steinbüchel A; Priefert H
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):745-55. PubMed ID: 16421716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directing vanillin production from ferulic acid by increased acetyl-CoA consumption in recombinant Escherichia coli.
    Lee EG; Yoon SH; Das A; Lee SH; Li C; Kim JY; Choi MS; Oh DK; Kim SW
    Biotechnol Bioeng; 2009 Jan; 102(1):200-8. PubMed ID: 18683263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and induction of phenolic acid decarboxylase from Aspergillus luchuensis.
    Maeda M; Tokashiki M; Tokashiki M; Uechi K; Ito S; Taira T
    J Biosci Bioeng; 2018 Aug; 126(2):162-168. PubMed ID: 29519654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenylpropanoid 2,3-dioxygenase involved in the cleavage of the ferulic acid side chain to form vanillin and glyoxylic acid in Vanilla planifolia.
    Negishi O; Negishi Y
    Biosci Biotechnol Biochem; 2017 Sep; 81(9):1732-1740. PubMed ID: 28743207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of Isoeugenol into Vanillin Using Immobilized Recombinant Cells Containing Isoeugenol Monooxygenase Active Aggregates.
    Zhao L; Jiang Y; Fang H; Zhang H; Cheng S; Rajoka MSR; Wu Y
    Appl Biochem Biotechnol; 2019 Oct; 189(2):448-458. PubMed ID: 31044370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vanillin production using Escherichia coli cells over-expressing isoeugenol monooxygenase of Pseudomonas putida.
    Yamada M; Okada Y; Yoshida T; Nagasawa T
    Biotechnol Lett; 2008 Apr; 30(4):665-70. PubMed ID: 18040605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.