These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 28042012)
41. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. Gallage NJ; Hansen EH; Kannangara R; Olsen CE; Motawia MS; Jørgensen K; Holme I; Hebelstrup K; Grisoni M; Møller BL Nat Commun; 2014 Jun; 5():4037. PubMed ID: 24941968 [TBL] [Abstract][Full Text] [Related]
42. Cloning, sequencing, and overexpression in Escherichia coli of the Enterobacter sp. Px6-4 gene for ferulic acid decarboxylase. Gu W; Li X; Huang J; Duan Y; Meng Z; Zhang KQ; Yang J Appl Microbiol Biotechnol; 2011 Mar; 89(6):1797-805. PubMed ID: 21085952 [TBL] [Abstract][Full Text] [Related]
43. A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran. Lesage-Meessen L; Lomascolo A; Bonnin E; Thibault JF; Buleon A; Roller M; Asther M; Record E; Ceccaldi BC; Asther M Appl Biochem Biotechnol; 2002; 102-103(1-6):141-53. PubMed ID: 12396118 [TBL] [Abstract][Full Text] [Related]
44. Vanillin biotechnology: the perspectives and future. Banerjee G; Chattopadhyay P J Sci Food Agric; 2019 Jan; 99(2):499-506. PubMed ID: 30094833 [TBL] [Abstract][Full Text] [Related]
45. Metabolic Engineering of the Actinomycete Amycolatopsis sp. Strain ATCC 39116 towards Enhanced Production of Natural Vanillin. Fleige C; Meyer F; Steinbüchel A Appl Environ Microbiol; 2016 Jun; 82(11):3410-3419. PubMed ID: 27037121 [TBL] [Abstract][Full Text] [Related]
46. Isoeugenol monooxygenase and its putative regulatory gene are located in the eugenol metabolic gene cluster in Pseudomonas nitroreducens Jin1. Ryu JY; Seo J; Unno T; Ahn JH; Yan T; Sadowsky MJ; Hur HG Arch Microbiol; 2010 Mar; 192(3):201-9. PubMed ID: 20091296 [TBL] [Abstract][Full Text] [Related]
47. Enhanced vanillin production from ferulic acid using adsorbent resin. Hua D; Ma C; Song L; Lin S; Zhang Z; Deng Z; Xu P Appl Microbiol Biotechnol; 2007 Mar; 74(4):783-90. PubMed ID: 17124580 [TBL] [Abstract][Full Text] [Related]
48. Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin. Yang W; Tang H; Ni J; Wu Q; Hua D; Tao F; Xu P PLoS One; 2013; 8(6):e67339. PubMed ID: 23840666 [TBL] [Abstract][Full Text] [Related]
49. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis. Lee H; Park J; Jung C; Han D; Seo J; Ahn JH; Chong Y; Hur HG Appl Microbiol Biotechnol; 2015 Nov; 99(22):9473-81. PubMed ID: 26059194 [TBL] [Abstract][Full Text] [Related]
50. Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid. Graf N; Altenbuchner J Appl Microbiol Biotechnol; 2014 Jan; 98(1):137-49. PubMed ID: 24136472 [TBL] [Abstract][Full Text] [Related]
51. A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. Lesage-Meessen L; Delattre M; Haon M; Thibault JF; Ceccaldi BC; Brunerie P; Asther M J Biotechnol; 1996 Oct; 50(2-3):107-13. PubMed ID: 8987621 [TBL] [Abstract][Full Text] [Related]
52. Bioengineering of the Plant Culture of Capsicum frutescens with Vanillin Synthase Gene for the Production of Vanillin. Chee MJ; Lycett GW; Khoo TJ; Chin CF Mol Biotechnol; 2017 Jan; 59(1):1-8. PubMed ID: 27826796 [TBL] [Abstract][Full Text] [Related]
54. Feeding strategies to optimize vanillin production by Amycolatopsis sp. ATCC 39116. Valério R; Bernardino ARS; Torres CAV; Brazinha C; Tavares ML; Crespo JG; Reis MAM Bioprocess Biosyst Eng; 2021 Apr; 44(4):737-747. PubMed ID: 33389106 [TBL] [Abstract][Full Text] [Related]
55. Metabolic characterization of newly isolated Pseudomonas nitroreducens Jin1 growing on eugenol and isoeugenol. Unno T; Kim SJ; Kanaly RA; Ahn JH; Kang SI; Hur HG J Agric Food Chem; 2007 Oct; 55(21):8556-61. PubMed ID: 17867641 [TBL] [Abstract][Full Text] [Related]
56. Biosynthesis of vanillin via ferulic acid in Vanilla planifolia. Negishi O; Sugiura K; Negishi Y J Agric Food Chem; 2009 Nov; 57(21):9956-61. PubMed ID: 19817415 [TBL] [Abstract][Full Text] [Related]
57. Cold generation of smoke flavour by the first phenolic acid decarboxylase from a filamentous ascomycete - Isaria farinosa. Linke D; Riemer SJL; Schimanski S; Nieter A; Krings U; Berger RG Fungal Biol; 2017 Sep; 121(9):763-774. PubMed ID: 28800848 [TBL] [Abstract][Full Text] [Related]
58. Bacillus aryabhattai BA03: a novel approach to the production of natural value-added compounds. Paz A; Carballo J; Pérez MJ; Domínguez JM World J Microbiol Biotechnol; 2016 Oct; 32(10):159. PubMed ID: 27562593 [TBL] [Abstract][Full Text] [Related]
59. Metabolic engineering of E. coli top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM. Chakraborty D; Gupta G; Kaur B Protein Expr Purif; 2016 Dec; 128():123-33. PubMed ID: 27591788 [TBL] [Abstract][Full Text] [Related]
60. Biotransformation of phenolic compounds by Bacillus aryabhattai. Paz A; Costa-Trigo I; Tugores F; Míguez M; de la Montaña J; Domínguez JM Bioprocess Biosyst Eng; 2019 Oct; 42(10):1671-1679. PubMed ID: 31278591 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]