These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28042044)

  • 1. Consecutive Elongation of D-Amino Acids in Translation.
    Katoh T; Tajima K; Suga H
    Cell Chem Biol; 2017 Jan; 24(1):46-54. PubMed ID: 28042044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Logical engineering of D-arm and T-stem of tRNA that enhances d-amino acid incorporation.
    Katoh T; Iwane Y; Suga H
    Nucleic Acids Res; 2017 Dec; 45(22):12601-12610. PubMed ID: 29155943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosomal Incorporation of Consecutive β-Amino Acids.
    Katoh T; Suga H
    J Am Chem Soc; 2018 Sep; 140(38):12159-12167. PubMed ID: 30221942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosomal Elongation of Cyclic γ-Amino Acids using a Reprogrammed Genetic Code.
    Katoh T; Suga H
    J Am Chem Soc; 2020 Mar; 142(11):4965-4969. PubMed ID: 32129615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The RaPID Platform for the Discovery of Pseudo-Natural Macrocyclic Peptides.
    Goto Y; Suga H
    Acc Chem Res; 2021 Sep; 54(18):3604-3617. PubMed ID: 34505781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Translation Components Improve Incorporation of Exotic Amino Acids.
    Katoh T; Suga H
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30691159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Outwitting EF-Tu and the ribosome: translation with d-amino acids.
    Achenbach J; Jahnz M; Bethge L; Paal K; Jung M; Schuster M; Albrecht R; Jarosch F; Nierhaus KH; Klussmann S
    Nucleic Acids Res; 2015 Jul; 43(12):5687-98. PubMed ID: 26026160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reevaluation of the D-amino acid compatibility with the elongation event in translation.
    Fujino T; Goto Y; Suga H; Murakami H
    J Am Chem Soc; 2013 Feb; 135(5):1830-7. PubMed ID: 23301668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center.
    Englander MT; Avins JL; Fleisher RC; Liu B; Effraim PR; Wang J; Schulten K; Leyh TS; Gonzalez RL; Cornish VW
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6038-43. PubMed ID: 25918365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribosome selectivity and nascent chain context in modulating the incorporation of fluorescent non-canonical amino acid into proteins.
    Thommen M; Draycheva A; Rodnina MV
    Sci Rep; 2022 Jul; 12(1):12848. PubMed ID: 35896582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro selection of tRNAs for efficient four-base decoding to incorporate non-natural amino acids into proteins in an Escherichia coli cell-free translation system.
    Taira H; Hohsaka T; Sisido M
    Nucleic Acids Res; 2006; 34(5):1653-62. PubMed ID: 16549877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploration of incorporation of Nalpha-methylated amino acids into peptides by sense-suppression method.
    Kawakami T; Murakami H; Suga H
    Nucleic Acids Symp Ser (Oxf); 2007; (51):361-2. PubMed ID: 18029736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexizyme as a versatile tRNA acylation catalyst and the application for translation.
    Murakami H; Ohta A; Goto Y; Sako Y; Suga H
    Nucleic Acids Symp Ser (Oxf); 2006; (50):35-6. PubMed ID: 17150804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexizymes for genetic code reprogramming.
    Goto Y; Katoh T; Suga H
    Nat Protoc; 2011 Jun; 6(6):779-90. PubMed ID: 21637198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexizymes as a tRNA acylation tool facilitating genetic code reprogramming.
    Goto Y; Suga H
    Methods Mol Biol; 2012; 848():465-78. PubMed ID: 22315087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of Functional Macrocyclic Peptides by Means of the RaPID System.
    Tsiamantas C; Otero-Ramirez ME; Suga H
    Methods Mol Biol; 2019; 2001():299-315. PubMed ID: 31134577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovering functional, non-proteinogenic amino acid containing, peptides using genetic code reprogramming.
    Rogers JM; Suga H
    Org Biomol Chem; 2015 Sep; 13(36):9353-63. PubMed ID: 26280393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of amber suppressor tRNAs appropriate for incorporation of nonnatural amino acids.
    Taira H; Matsushita Y; Kojima K; Hohsaka T
    Nucleic Acids Symp Ser (Oxf); 2006; (50):233-4. PubMed ID: 17150903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translation initiation with initiator tRNA charged with exotic peptides.
    Goto Y; Suga H
    J Am Chem Soc; 2009 Apr; 131(14):5040-1. PubMed ID: 19301866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide formation by N-methyl amino acids in translation is hastened by higher pH and tRNA(Pro).
    Wang J; Kwiatkowski M; Pavlov MY; Ehrenberg M; Forster AC
    ACS Chem Biol; 2014 Jun; 9(6):1303-11. PubMed ID: 24673854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.