These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28042083)

  • 1. Nuclear and perinuclear targeting efficiency of quantum dots depends on density of peptidic targeting residues on their surface.
    Maity AR; Stepensky D
    J Control Release; 2017 Jul; 257():32-39. PubMed ID: 28042083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Subcellular Targeting to the Cell Nucleus of Quantum Dots Densely Decorated with a Nuclear Localization Sequence Peptide.
    Maity AR; Stepensky D
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2001-9. PubMed ID: 26731220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delivery of drugs to intracellular organelles using drug delivery systems: Analysis of research trends and targeting efficiencies.
    Maity AR; Stepensky D
    Int J Pharm; 2015 Dec; 496(2):268-74. PubMed ID: 26516100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted nuclear delivery using peptide-coated quantum dots.
    Kuo CW; Chueh DY; Singh N; Chien FC; Chen P
    Bioconjug Chem; 2011 Jun; 22(6):1073-80. PubMed ID: 21528926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient decoration of nanoparticles intended for intracellular drug targeting with targeting residues, as revealed by a new indirect analytical approach.
    Kaplun V; Stepensky D
    Mol Pharm; 2014 Aug; 11(8):2906-14. PubMed ID: 25040658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 'IntraCell' plugin for assessment of intracellular localization of nano-delivery systems and their targeting to the individual organelles.
    Sneh-Edri H; Stepensky D
    Biochem Biophys Res Commun; 2011 Feb; 405(2):228-33. PubMed ID: 21219848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan Nanoparticles for Nuclear Targeting: The Effect of Nanoparticle Size and Nuclear Localization Sequence Density.
    Tammam SN; Azzazy HM; Breitinger HG; Lamprecht A
    Mol Pharm; 2015 Dec; 12(12):4277-89. PubMed ID: 26465978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly "Targeted" Drug Delivery Systems.
    Maity AR; Stepensky D
    Mol Pharm; 2016 Jan; 13(1):1-7. PubMed ID: 26587994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging.
    Yang L; Jiang W; Qiu L; Jiang X; Zuo D; Wang D; Yang L
    Nanoscale; 2015 Apr; 7(14):6104-13. PubMed ID: 25773263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors influencing the nuclear targeting ability of nuclear localization signals.
    Sun Y; Xian L; Xing H; Yu J; Yang Z; Yang T; Yang L; Ding P
    J Drug Target; 2016 Dec; 24(10):927-933. PubMed ID: 27126810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell uptake and intracellular visualization using quantum dots or nuclear localization signal-modified quantum dots with gold nanoparticles as quenchers.
    Kuo KW; Chen TH; Kuo WT; Huang HY; Lo HY; Huang YY
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4173-7. PubMed ID: 21128397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of ligand density and size in mediating quantum dot nuclear transport.
    Tang PS; Sathiamoorthy S; Lustig LC; Ponzielli R; Inamoto I; Penn LZ; Shin JA; Chan WC
    Small; 2014 Oct; 10(20):4182-92. PubMed ID: 24990622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme-responsive cell-penetrating peptide conjugated mesoporous silica quantum dot nanocarriers for controlled release of nucleus-targeted drug molecules and real-time intracellular fluorescence imaging of tumor cells.
    Li J; Liu F; Shao Q; Min Y; Costa M; Yeow EK; Xing B
    Adv Healthc Mater; 2014 Aug; 3(8):1230-9. PubMed ID: 24550203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A potent, minimally invasive and simple strategy of enhancing intracellular targeted delivery of Tat peptide-conjugated quantum dots: organic solvent-based permeation enhancer.
    Yong X; Yang X; Emory SR; Wang J; Dai J; Yu X; Mei L; Xie J; Ruan G
    Biomater Sci; 2018 Nov; 6(11):3085-3095. PubMed ID: 30303500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of nuclear localization signal for nuclear transport of DNA-encapsulating particles.
    Eguchi A; Furusawa H; Yamamoto A; Akuta T; Hasegawa M; Okahata Y; Nakanishi M
    J Control Release; 2005 Jun; 104(3):507-19. PubMed ID: 15911050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-activated size reduction of large compound nanoparticles for in vivo nucleus-targeted drug delivery.
    Fan Y; Li C; Li F; Chen D
    Biomaterials; 2016 Apr; 85():30-9. PubMed ID: 26854389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei.
    Wang HY; Chen JX; Sun YX; Deng JZ; Li C; Zhang XZ; Zhuo RX
    J Control Release; 2011 Oct; 155(1):26-33. PubMed ID: 21187118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene quantum dot based charge-reversal nanomaterial for nucleus-targeted drug delivery and efficiency controllable photodynamic therapy.
    Ju J; Regmi S; Fu A; Lim S; Liu Q
    J Biophotonics; 2019 Jun; 12(6):e201800367. PubMed ID: 30701677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots.
    Narayanan K; Yen SK; Dou Q; Padmanabhan P; Sudhaharan T; Ahmed S; Ying JY; Selvan ST
    Sci Rep; 2013; 3():2184. PubMed ID: 23851637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular import mediated by nuclear localization signal Peptide sequences.
    Ragin AD; Morgan RA; Chmielewski J
    Chem Biol; 2002 Aug; 9(8):943-8. PubMed ID: 12204694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.