These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28042089)

  • 1. PAF53 is essential in mammalian cells: CRISPR/Cas9 fails to eliminate PAF53 expression.
    Rothblum LI; Rothblum K; Chang E
    Gene; 2017 May; 612():55-60. PubMed ID: 28042089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conditional depletion of the RNA polymerase I subunit PAF53 reveals that it is essential for mitosis and enables identification of functional domains.
    McNamar R; Abu-Adas Z; Rothblum K; Knutson BA; Rothblum LI
    J Biol Chem; 2019 Dec; 294(52):19907-19922. PubMed ID: 31727736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the interactions of mammalian RNA polymerase I associated proteins PAF53 and PAF49.
    Penrod Y; Rothblum K; Rothblum LI
    Biochemistry; 2012 Aug; 51(33):6519-26. PubMed ID: 22849406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the association of the PAF53/PAF49 heterodimer with RNA polymerase I.
    Penrod Y; Rothblum K; Cavanaugh A; Rothblum LI
    Gene; 2015 Feb; 556(1):61-7. PubMed ID: 25225125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA polymerase I associated factor 53 binds to the nucleolar transcription factor UBF and functions in specific rDNA transcription.
    Hanada K; Song CZ; Yamamoto K; Yano K; Maeda Y; Yamaguchi K; Muramatsu M
    EMBO J; 1996 May; 15(9):2217-26. PubMed ID: 8641287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive and strong association of PAF53 with RNA polymerase I.
    Seither P; Zatsepina O; Hoffmann M; Grummt I
    Chromosoma; 1997 Sep; 106(4):216-25. PubMed ID: 9254723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced genome editing in mammalian cells with a modified dual-fluorescent surrogate system.
    Zhou Y; Liu Y; Hussmann D; Brøgger P; Al-Saaidi RA; Tan S; Lin L; Petersen TS; Zhou GQ; Bross P; Aagaard L; Klein T; Rønn SG; Pedersen HD; Bolund L; Nielsen AL; Sørensen CB; Luo Y
    Cell Mol Life Sci; 2016 Jul; 73(13):2543-63. PubMed ID: 26755436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 mediated generation of stable chondrocyte cell lines with targeted gene knockouts; analysis of an aggrecan knockout cell line.
    Yang M; Zhang L; Stevens J; Gibson G
    Bone; 2014 Dec; 69():118-25. PubMed ID: 25260929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome modification by CRISPR/Cas9.
    Ma Y; Zhang L; Huang X
    FEBS J; 2014 Dec; 281(23):5186-93. PubMed ID: 25315507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA polymerase I transcription in confluent cells: Rb downregulates rDNA transcription during confluence-induced cell cycle arrest.
    Hannan KM; Kennedy BK; Cavanaugh AH; Hannan RD; Hirschler-Laszkiewicz I; Jefferson LS; Rothblum LI
    Oncogene; 2000 Jul; 19(31):3487-97. PubMed ID: 10918607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 technique with the piggybac transposon system for mouse in utero electroporation to study cortical development.
    Cheng M; Jin X; Mu L; Wang F; Li W; Zhong X; Liu X; Shen W; Liu Y; Zhou Y
    J Neurosci Res; 2016 Sep; 94(9):814-24. PubMed ID: 27317429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the α-1,3-galactosyltransferase gene in porcine embryonic fibroblasts.
    Sato M; Miyoshi K; Nagao Y; Nishi Y; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S
    Xenotransplantation; 2014; 21(3):291-300. PubMed ID: 24919525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9-based photoactivatable transcription system.
    Nihongaki Y; Yamamoto S; Kawano F; Suzuki H; Sato M
    Chem Biol; 2015 Feb; 22(2):169-74. PubMed ID: 25619936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput screens in mammalian cells using the CRISPR-Cas9 system.
    Peng J; Zhou Y; Zhu S; Wei W
    FEBS J; 2015 Jun; 282(11):2089-96. PubMed ID: 25731961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations.
    Kuscu C; Parlak M; Tufan T; Yang J; Szlachta K; Wei X; Mammadov R; Adli M
    Nat Methods; 2017 Jul; 14(7):710-712. PubMed ID: 28581493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment.
    Kennedy EM; Cullen BR
    Virology; 2015 May; 479-480():213-20. PubMed ID: 25759096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi.
    Kaulich M; Lee YJ; Lönn P; Springer AD; Meade BR; Dowdy SF
    Nucleic Acids Res; 2015 Apr; 43(7):e45. PubMed ID: 25586224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated, homology-independent knock-in system.
    Katoh Y; Michisaka S; Nozaki S; Funabashi T; Hirano T; Takei R; Nakayama K
    Mol Biol Cell; 2017 Apr; 28(7):898-906. PubMed ID: 28179459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis.
    Mao Y; Zhang Z; Feng Z; Wei P; Zhang H; Botella JR; Zhu JK
    Plant Biotechnol J; 2016 Feb; 14(2):519-32. PubMed ID: 26360626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system.
    Bevacqua RJ; Fernandez-Martín R; Savy V; Canel NG; Gismondi MI; Kues WA; Carlson DF; Fahrenkrug SC; Niemann H; Taboga OA; Ferraris S; Salamone DF
    Theriogenology; 2016 Nov; 86(8):1886-1896.e1. PubMed ID: 27566851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.