These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28042282)

  • 1. Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals.
    Gao W; Rigout M; Owens H
    J Nanopart Res; 2016; 18(12):387. PubMed ID: 28042282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structural coloration of textile materials using self-assembled silica nanoparticles.
    Gao W; Rigout M; Owens H
    J Nanopart Res; 2017; 19(9):303. PubMed ID: 28932168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method to improve the quality of silica nanoparticles (SNPs) over increasing storage durations.
    Lu Z; Owens H
    J Nanopart Res; 2018; 20(8):213. PubMed ID: 30147435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Silica Microspheres-Inspired by the Formation of Ice Crystals-With High Homogeneous Particle Sizes and Their Applications in Photonic Crystals.
    Chen X; Xu H; Hua C; Zhao J; Li Y; Song Y
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30340331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and Spatial Order Characterization of Controlled Silica Particle Sizes Organized as Photonic Crystals Arrays.
    Estrada Alvarez SA; Guger I; Febbraro J; Turak A; Lin HR; Salinas Y; Brüggemann O
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Fabrication of Nano-to-Microsphere Polycrystalline Opals Using Slope Self-Assembly.
    Díaz-Marín CD; Shetty RM; Cheung S; Vaartstra G; Gopinath A; Wang EN
    Langmuir; 2021 Nov; 37(43):12568-12576. PubMed ID: 34672609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying the Stöber Process: Is the Organic Solvent Indispensable?
    Wang J; Zhang K; Kavak S; Bals S; Meynen V
    Chemistry; 2023 Feb; 29(7):e202202670. PubMed ID: 36342820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Robust Method for the Elaboration of SiO
    Fookes F; Polo Parada L; Fidalgo M
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse silica opal photonic crystals for optical sensing applications.
    Nishijima Y; Ueno K; Juodkazis S; Mizeikis V; Misawa H; Tanimura T; Maeda K
    Opt Express; 2007 Oct; 15(20):12979-88. PubMed ID: 19550567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonic properties of hybrid colloidal crystals fabricated by a rapid dip-coating process.
    Deleuze C; Sarrat B; Ehrenfeld F; Perquis S; Derail C; Billon L
    Phys Chem Chem Phys; 2011 Jun; 13(22):10681-9. PubMed ID: 21552585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stöber silica particles as basis for redox modifications: particle shape, size, polydispersity, and porosity.
    Plumeré N; Ruff A; Speiser B; Feldmann V; Mayer HA
    J Colloid Interface Sci; 2012 Feb; 368(1):208-19. PubMed ID: 22169182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse opal photonic crystal of chalcogenide glass by solution processing.
    Kohoutek T; Orava J; Sawada T; Fudouzi H
    J Colloid Interface Sci; 2011 Jan; 353(2):454-8. PubMed ID: 21035816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of self-assembled three-dimensional photonic crystals onto structured silicon wafers.
    Ye J; Zentel R; Arpiainen S; Ahopelto J; Jonsson F; Romanov SG; Sotomayor Torres CM
    Langmuir; 2006 Aug; 22(17):7378-83. PubMed ID: 16893241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opal and inverse opal fabricated with a flow-controlled vertical deposition method.
    Zhou Z; Zhao XS
    Langmuir; 2005 May; 21(10):4717-23. PubMed ID: 16032895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spherical colloidal photonic crystals.
    Zhao Y; Shang L; Cheng Y; Gu Z
    Acc Chem Res; 2014 Dec; 47(12):3632-42. PubMed ID: 25393430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic Study of Reaction Conditions for Size-Controlled Synthesis of Silica Nanoparticles.
    Vörös-Horváth B; Salem A; Kovács B; Széchenyi A; Pál S
    Nanomaterials (Basel); 2024 Sep; 14(19):. PubMed ID: 39404288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core-shell silica-rhodamine B nanosphere for synthetic opals: from fluorescence spectral redistribution to sensing.
    Lova P; Congiu S; Sparnacci K; Angelini A; Boarino L; Laus M; Di Stasio F; Comoretto D
    RSC Adv; 2020 Apr; 10(25):14958-14964. PubMed ID: 35497145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites.
    Kim JW; Kim LU; Kim CK
    Biomacromolecules; 2007 Jan; 8(1):215-22. PubMed ID: 17206810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monodisperse spherical mesoporous silica particles: fast synthesis procedure and fabrication of photonic-crystal films.
    Trofimova EY; Kurdyukov DA; Yakovlev SA; Kirilenko DA; Kukushkina YA; Nashchekin AV; Sitnikova AA; Yagovkina MA; Golubev VG
    Nanotechnology; 2013 Apr; 24(15):155601. PubMed ID: 23518601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.