These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies. Shenoy D; Little S; Langer R; Amiji M Pharm Res; 2005 Dec; 22(12):2107-14. PubMed ID: 16254763 [TBL] [Abstract][Full Text] [Related]
43. Hyperbranched-hyperbranched polymeric nanoassembly to mediate controllable co-delivery of siRNA and drug for synergistic tumor therapy. Jia HZ; Zhang W; Zhu JY; Yang B; Chen S; Chen G; Zhao YF; Feng J; Zhang XZ J Control Release; 2015 Oct; 216():9-17. PubMed ID: 26272764 [TBL] [Abstract][Full Text] [Related]
44. Synergistic antitumor efficacy of redox and pH dually responsive micelleplexes for co-delivery of camptothecin and genes. Chen M; Zhang Y; Chen Z; Xie S; Luo X; Li X Acta Biomater; 2017 Feb; 49():444-455. PubMed ID: 27940163 [TBL] [Abstract][Full Text] [Related]
45. A pH-Responsive Host-guest Nanosystem Loading Succinobucol Suppresses Lung Metastasis of Breast Cancer. Dan Z; Cao H; He X; Zhang Z; Zou L; Zeng L; Xu Y; Yin Q; Xu M; Zhong D; Yu H; Shen Q; Zhang P; Li Y Theranostics; 2016; 6(3):435-45. PubMed ID: 26909117 [TBL] [Abstract][Full Text] [Related]
46. Redox and pH dual responsive poly(amidoamine) dendrimer-poly(ethylene glycol) conjugates for intracellular delivery of doxorubicin. Hu W; Qiu L; Cheng L; Hu Q; Liu Y; Hu Z; Chen D; Cheng L Acta Biomater; 2016 May; 36():241-53. PubMed ID: 26995505 [TBL] [Abstract][Full Text] [Related]
47. Integrated hollow mesoporous silica nanoparticles for target drug/siRNA co-delivery. Ma X; Zhao Y; Ng KW; Zhao Y Chemistry; 2013 Nov; 19(46):15593-603. PubMed ID: 24123533 [TBL] [Abstract][Full Text] [Related]
48. Delivery of siRNA targeting tumor metabolism using non-covalent PEGylated chitosan nanoparticles: Identification of an optimal combination of ligand structure, linker and grafting method. Corbet C; Ragelle H; Pourcelle V; Vanvarenberg K; Marchand-Brynaert J; Préat V; Feron O J Control Release; 2016 Feb; 223():53-63. PubMed ID: 26699426 [TBL] [Abstract][Full Text] [Related]
49. Polycation-detachable nanoparticles self-assembled from mPEG-PCL-g-SS-PDMAEMA for in vitro and in vivo siRNA delivery. Lin D; Jiang Q; Cheng Q; Huang Y; Huang P; Han S; Guo S; Liang Z; Dong A Acta Biomater; 2013 Aug; 9(8):7746-57. PubMed ID: 23624221 [TBL] [Abstract][Full Text] [Related]
50. pH-responsive hybrid quantum dots for targeting hypoxic tumor siRNA delivery. Zhu H; Zhang S; Ling Y; Meng G; Yang Y; Zhang W J Control Release; 2015 Dec; 220(Pt A):529-544. PubMed ID: 26590349 [TBL] [Abstract][Full Text] [Related]
51. Nanoparticle siRNA against BMI-1 with a Polyethylenimine-Laminarin Conjugate for Gene Therapy in Human Breast Cancer. Ren X; Liu L; Zhou Y; Zhu Y; Zhang H; Zhang Z; Li H Bioconjug Chem; 2016 Jan; 27(1):66-73. PubMed ID: 26629893 [TBL] [Abstract][Full Text] [Related]
52. Synthesis of dual-functional targeting probes for cancer theranostics based on iron oxide nanoparticles coated by centipede-like polymer connected with pH-responsive anticancer drug. Zhao H; Li Z; Yang B; Wang J; Li Y J Biomater Sci Polym Ed; 2015; 26(16):1178-89. PubMed ID: 26249213 [TBL] [Abstract][Full Text] [Related]
53. Matrix metalloproteinase 2-responsive micelle for siRNA delivery. Wang HX; Yang XZ; Sun CY; Mao CQ; Zhu YH; Wang J Biomaterials; 2014 Aug; 35(26):7622-34. PubMed ID: 24929619 [TBL] [Abstract][Full Text] [Related]
54. Pre- and Post-Transcriptional Regulation of cFLIP for Effective Cancer Therapy Using pH-Ultrasensitive Nanoparticles. Phung CD; Tran TH; Choi JY; Jeong JH; Ku SK; Yong CS; Kim JO ACS Appl Mater Interfaces; 2021 Feb; 13(5):5999-6010. PubMed ID: 33506682 [TBL] [Abstract][Full Text] [Related]
55. Glucose-linked sub-50-nm unimer polyion complex-assembled gold nanoparticles for targeted siRNA delivery to glucose transporter 1-overexpressing breast cancer stem-like cells. Yi Y; Kim HJ; Zheng M; Mi P; Naito M; Kim BS; Min HS; Hayashi K; Perche F; Toh K; Liu X; Mochida Y; Kinoh H; Cabral H; Miyata K; Kataoka K J Control Release; 2019 Feb; 295():268-277. PubMed ID: 30639386 [TBL] [Abstract][Full Text] [Related]
56. The pH-Triggered Triblock Nanocarrier Enabled Highly Efficient siRNA Delivery for Cancer Therapy. Du L; Zhou J; Meng L; Wang X; Wang C; Huang Y; Zheng S; Deng L; Cao H; Liang Z; Dong A; Cheng Q Theranostics; 2017; 7(14):3432-3445. PubMed ID: 28912886 [TBL] [Abstract][Full Text] [Related]
57. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Gomes-da-Silva LC; Fonseca NA; Moura V; Pedroso de Lima MC; Simões S; Moreira JN Acc Chem Res; 2012 Jul; 45(7):1163-71. PubMed ID: 22568781 [TBL] [Abstract][Full Text] [Related]
58. Multifunctional pH-Sensitive Amino Lipids for siRNA Delivery. Gujrati M; Vaidya A; Lu ZR Bioconjug Chem; 2016 Jan; 27(1):19-35. PubMed ID: 26629982 [TBL] [Abstract][Full Text] [Related]
59. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy. Xie Y; Qiao H; Su Z; Chen M; Ping Q; Sun M Biomaterials; 2014 Sep; 35(27):7978-91. PubMed ID: 24939077 [TBL] [Abstract][Full Text] [Related]
60. Multifunctional nanoparticles co-delivering EZH2 siRNA and etoposide for synergistic therapy of orthotopic non-small-cell lung tumor. Yuan ZQ; Chen WL; You BG; Liu Y; Yang SD; Li JZ; Zhu WJ; Zhou XF; Liu C; Zhang XN J Control Release; 2017 Dec; 268():198-211. PubMed ID: 29061511 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]