These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2804245)

  • 1. Physical characterization of and ionophore-mediated europium(III) transport through unilamellar phosphatidylcholine vesicles. A laser-induced europium(III) luminescence spectroscopy study.
    Cader BM; Horrocks WD
    Biophys Chem; 1989 Jul; 33(3):265-75. PubMed ID: 2804245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A laser-induced europium (III) ion luminescence study of the interaction of this ion with phospholipid bilayer vesicles above and below the gel to liquid-crystalline phase transition temperature.
    Cader BM; Horrocks WD
    Biophys Chem; 1988 Oct; 32(1):97-109. PubMed ID: 3233318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carboxylic ionophore (lasalocid A and A23187) mediated lanthanide ion transport across phospholipid vesicles.
    Shastri BP; Sankaram MB; Easwaran KR
    Biochemistry; 1987 Aug; 26(16):4925-30. PubMed ID: 3117108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The stoichiometry of A23187- and X537A-mediated calcium ion transport across lipid bilayers.
    Blau L; Stern RB; Bittman R
    Biochim Biophys Acta; 1984 Nov; 778(1):219-23. PubMed ID: 6437447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser-induced europium(III) luminescence as a probe of the metal ion mediated association of human prothrombin with phospholipid.
    Rhee MJ; Horrocks WD; Kosow DP
    Biochemistry; 1982 Sep; 21(19):4524-8. PubMed ID: 7138814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of carrier ionophores with phospholipid vesicles.
    Sankaram MB; Shastri BP; Easwaran KR
    Biochemistry; 1987 Aug; 26(16):4936-41. PubMed ID: 3117109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of europium(III) with phospholipid vesicles as monitored by laser-excited europium(III) luminescence.
    Herrmann TR; Jayaweera AR; Shamoo AE
    Biochemistry; 1986 Sep; 25(19):5834-8. PubMed ID: 3778885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kinetics of ionophore X-537A-mediated transport of manganese through dipalmitoylphosphatidylcholine vesicles. A 1H-NMR study.
    Degani H; Simon S; McLaughlin AC
    Biochim Biophys Acta; 1981 Aug; 646(2):320-8. PubMed ID: 6895319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence study of the divalent cation-transport mechanism of ionophore A23187 in phospholipid membranes.
    Kolber MA; Haynes DH
    Biophys J; 1981 Nov; 36(2):369-91. PubMed ID: 6796150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transport of Na+ and K+ ions through phospholipid bilayers mediated by the antibiotics salinomycin and narasin studied by 23Na- and 39K-NMR spectroscopy.
    Riddell FG; Tompsett SJ
    Biochim Biophys Acta; 1990 May; 1024(1):193-7. PubMed ID: 2337616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A synthetic crown ether carboxylic acid ionophore displays synergistic transport of Pr3+ in conjunction with lasalocid.
    Bartsch RA; Grandjean J; Laszlo P
    Biochem Biophys Res Commun; 1983 Nov; 117(1):340-3. PubMed ID: 6229251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of long-chain native fatty acids across lipid bilayer membranes indicates that transbilayer flip-flop is rate limiting.
    Kleinfeld AM; Chu P; Romero C
    Biochemistry; 1997 Nov; 36(46):14146-58. PubMed ID: 9369487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of lipid composition on the binding of lasalocid A to small unilamellar vesicles.
    Grunwald R; Painter GR
    Biochim Biophys Acta; 1990 Sep; 1027(3):245-52. PubMed ID: 2397235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR kinetic studies of the ionophore X-537A-mediated transport of manganous ions across phospholipid bilayers.
    Degani H
    Biochim Biophys Acta; 1978 Apr; 508(2):364-9. PubMed ID: 25083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstituted human erythrocyte sugar transporter activity is determined by bilayer lipid head groups.
    Tefft RE; Carruthers A; Melchior DL
    Biochemistry; 1986 Jun; 25(12):3709-18. PubMed ID: 3718955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study on interactions of alpha-aminoisobutyric acid containing antibiotic peptides, trichopolyn I and hypelcin A with phosphatidylcholine bilayers.
    Matsuzaki K; Shioyama T; Okamura E; Umemura J; Takenaka T; Takaishi Y; Fujita T; Miyajima K
    Biochim Biophys Acta; 1991 Dec; 1070(2):419-28. PubMed ID: 1764454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and mechanism of long-chain fatty acid transport into phosphatidylcholine vesicles from various donor systems.
    Thomas RM; Baici A; Werder M; Schulthess G; Hauser H
    Biochemistry; 2002 Feb; 41(5):1591-601. PubMed ID: 11814353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Movement of calcium through artificial lipid membranes and the effects of ionophores.
    Hyono A; Hendriks T; Daemen FJ; Bonting SL
    Biochim Biophys Acta; 1975 Apr; 389(1):34-46. PubMed ID: 1095059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1H NMR study of valinomycin conformation in a phospholipid bilayer.
    Feigenson GW; Meers PR
    Nature; 1980 Jan; 283(5744):313-4. PubMed ID: 7352006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the interaction of an alpha-helical transmembrane peptide with phosphatidylcholine bilayer membranes by means of densimetry and ultrasound velocimetry.
    Rybar P; Krivanek R; Samuely T; Lewis RN; McElhaney RN; Hianik T
    Biochim Biophys Acta; 2007 Jun; 1768(6):1466-78. PubMed ID: 17462583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.