These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2804248)

  • 21. Carrier and non-carrier models for sugar transport in the human red blood cell.
    Lieb WR; Stein WD
    Biochim Biophys Acta; 1972 Apr; 265(2):187-207. PubMed ID: 4555470
    [No Abstract]   [Full Text] [Related]  

  • 22. Systems approach to the study of drug transport across membranes using suspension culture of mammalian cells. V. Simultaneous poassive transport and biosynthesis.
    Ando HY; Ho NF; Higuchi WI; Turi J; Shipman C
    J Theor Biol; 1976 Oct; 62(1):211-25. PubMed ID: 994520
    [No Abstract]   [Full Text] [Related]  

  • 23. The effect of the yield expression on the existence of oscillatory behavior in a three-variable model of a continuous fermentation system subject to product inhibition.
    Lenbury YW; Punpocha M
    Biosystems; 1989; 22(4):273-8. PubMed ID: 2804264
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tracer studies with isolated membrane vesicles.
    Hopfer U
    Methods Enzymol; 1989; 172():313-31. PubMed ID: 2747533
    [No Abstract]   [Full Text] [Related]  

  • 25. THE NUMERICAL SOLUTION OF THE TIME-DEPENDENT NERNST-PLANCK EQUATIONS.
    COHEN H; COOLEY JW
    Biophys J; 1965 Mar; 5(2):145-62. PubMed ID: 14268950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Independent pathways for water and solute movement across the cell membrane.
    Hays RM
    J Membr Biol; 1972 Dec; 10(3):367-71. PubMed ID: 4667924
    [No Abstract]   [Full Text] [Related]  

  • 27. Equations for membrane transport. Experimental and theoretical tests of the frictional model.
    Daneshpajooh MH; Mason EA; Bresler EH; Wendt RP
    Biophys J; 1975 Jun; 15(6):591-613. PubMed ID: 1148361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ionic permeation mechanisms in epithelia: biionic potentials, dilution potentials, conductances, and streaming potentials.
    Barry PH
    Methods Enzymol; 1989; 171():678-715. PubMed ID: 2593857
    [No Abstract]   [Full Text] [Related]  

  • 29. SOME IMPLICATIONS FOR BIOLOGY OF RECENT THEORETICAL AND EXPERIMENTAL STUDIES OF ION PERMEATION IN MODEL MEMBRANES.
    EISENMAN G; CONTI F
    J Gen Physiol; 1965 May; 48(5):SUPPL:65-73. PubMed ID: 14326139
    [No Abstract]   [Full Text] [Related]  

  • 30. Mechanisms for the facilitated diffusion of substrates across cell membranes.
    Carruthers A
    Biochemistry; 1991 Apr; 30(16):3898-906. PubMed ID: 2018761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comment on "Permeability, transport, and metabolism of solutes in Caco-2 cell monolayers: a theoretical study".
    Zhao YS; Hu ZY; Jiang RR; Yang JL; Chen F
    Drug Metab Dispos; 2010 Mar; 38(3):534-5; author reply 536-7. PubMed ID: 20164114
    [No Abstract]   [Full Text] [Related]  

  • 32. NMR spin exchange kinetics at equilibrium in membrane transport and enzyme systems.
    Kuchel PW; Chapman BE
    J Theor Biol; 1983 Dec; 105(4):569-89. PubMed ID: 6672473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Affordable Membrane Permeability Calculations: Permeation of Short-Chain Alcohols through Pure-Lipid Bilayers and a Mammalian Cell Membrane.
    Tse CH; Comer J; Sang Chu SK; Wang Y; Chipot C
    J Chem Theory Comput; 2019 May; 15(5):2913-2924. PubMed ID: 30998342
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrashort electrical pulses.
    Joshi RP; Hu Q; Aly R; Schoenbach KH; Hjalmarson HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011913. PubMed ID: 11461294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The physical interpretation of mathematical models for sodium permeability changes in excitable membranes.
    Jakobsson E
    Biophys J; 1973 Nov; 13(11):1200-11. PubMed ID: 4754199
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the derivation of the Kargol's mechanistic transport equations from the Kedem-Katchalsky phenomenological equations.
    Suchanek G
    Gen Physiol Biophys; 2005 Jun; 24(2):247-58. PubMed ID: 16118476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate.
    ter Kuile BH; Cook M
    Biochim Biophys Acta; 1994 Aug; 1193(2):235-9. PubMed ID: 8054344
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane transport of electrolyte ions and time-dependent membrane potential.
    Ohshima H; Makino K; Kondo T
    Biophys Chem; 1988 Sep; 31(3):225-9. PubMed ID: 3233297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Ion transport across cell membranes].
    Gomulkiewicz J
    Postepy Hig Med Dosw; 1973; 27(1):69-96. PubMed ID: 4696266
    [No Abstract]   [Full Text] [Related]  

  • 40. Analog program for the Widdas model of sugar transport.
    Hempling HG
    Biochim Biophys Acta; 1967 May; 135(2):355-8. PubMed ID: 6037364
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.