These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28042593)

  • 1. Surface Lattice Resonances for Enhanced and Directional Electroluminescence at High Current Densities.
    Zakharko Y; Held M; Graf A; Rödlmeier T; Eckstein R; Hernandez-Sosa G; Hähnlein B; Pezoldt J; Zaumseil J
    ACS Photonics; 2016 Dec; 3(12):2225-2230. PubMed ID: 28042593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position.
    Zakharko Y; Held M; Sadafi FZ; Gannott F; Mahdavi A; Peschel U; Taylor RN; Zaumseil J
    ACS Photonics; 2016 Jan; 3(1):1-7. PubMed ID: 26878028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directing fluorescence with plasmonic and photonic structures.
    Dutta Choudhury S; Badugu R; Lakowicz JR
    Acc Chem Res; 2015 Aug; 48(8):2171-80. PubMed ID: 26168343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals.
    Zakharko Y; Graf A; Schießl SP; Hähnlein B; Pezoldt J; Gather MC; Zaumseil J
    Nano Lett; 2016 May; 16(5):3278-84. PubMed ID: 27105249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin-Dependent Emission from Arrays of Planar Chiral Nanoantennas Due to Lattice and Localized Plasmon Resonances.
    Cotrufo M; Osorio CI; Koenderink AF
    ACS Nano; 2016 Mar; 10(3):3389-97. PubMed ID: 26854880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multispectral electroluminescence enhancement of single-walled carbon nanotubes coupled to periodic nanodisk arrays.
    Zakharko Y; Held M; Graf A; Rödlmeier T; Eckstein R; Hernandez-Sosa G; Hähnlein B; Pezoldt J; Zaumseil J
    Opt Express; 2017 Jul; 25(15):18092-18106. PubMed ID: 28789299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cesium Lead Bromide Quantum Dot Light-Emitting Field-Effect Transistors.
    Kim DK; Choi D; Park M; Jeong KS; Choi JH
    ACS Appl Mater Interfaces; 2020 May; 12(19):21944-21951. PubMed ID: 32319744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices.
    Lozano G; Grzela G; Verschuuren MA; Ramezani M; Rivas JG
    Nanoscale; 2014 Aug; 6(15):9223-9. PubMed ID: 24981706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large Area Emission in p-Type Polymer-Based Light-Emitting Field-Effect Transistors by Incorporating Charge Injection Interlayers.
    Acar G; Iqbal MJ; Chaudhry MU
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33672810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lasing action in strongly coupled plasmonic nanocavity arrays.
    Zhou W; Dridi M; Suh JY; Kim CH; Co DT; Wasielewski MR; Schatz GC; Odom TW
    Nat Nanotechnol; 2013 Jul; 8(7):506-11. PubMed ID: 23770807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining the light emitting area for displays in the unipolar regime of highly efficient light emitting transistors.
    Ullah M; Armin A; Tandy K; Yambem SD; Burn PL; Meredith P; Namdas EB
    Sci Rep; 2015 Mar; 5():8818. PubMed ID: 25743444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-Plane Surface Lattice and Higher Order Resonances in Self-Assembled Plasmonic Monolayers: From Substrate-Supported to Free-Standing Thin Films.
    Volk K; Fitzgerald JPS; Karg M
    ACS Appl Mater Interfaces; 2019 May; 11(17):16096-16106. PubMed ID: 30945839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.
    Danilov A; Tselikov G; Wu F; Kravets VG; Ozerov I; Bedu F; Grigorenko AN; Kabashin AV
    Biosens Bioelectron; 2018 May; 104():102-112. PubMed ID: 29331424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides.
    Murai S; Verschuuren MA; Lozano G; Pirruccio G; Rodriguez SR; Rivas JG
    Opt Express; 2013 Feb; 21(4):4250-62. PubMed ID: 23481959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quadrupole lattice resonances in plasmonic crystal excited by cylindrical vector beams.
    Sakai K; Nomura K; Yamamoto T; Omura T; Sasaki K
    Sci Rep; 2016 Oct; 6():34967. PubMed ID: 27734923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas.
    Vecchi G; Giannini V; Gómez Rivas J
    Phys Rev Lett; 2009 Apr; 102(14):146807. PubMed ID: 19392471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface lattice resonances enhanced directional amplified spontaneous emission on plasmonic honeycomb nanocone array.
    Wu D; Wang Y; Xiao J; Hu J; Zhao X; Gao Y; Yuan J; Wang W
    Phys Chem Chem Phys; 2023 Oct; 25(39):26847-26852. PubMed ID: 37782475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithographically Defined, Room Temperature Low Threshold Subwavelength Red-Emitting Hybrid Plasmonic Lasers.
    Liu N; Gocalinska A; Justice J; Gity F; Povey I; McCarthy B; Pemble M; Pelucchi E; Wei H; Silien C; Xu H; Corbett B
    Nano Lett; 2016 Dec; 16(12):7822-7828. PubMed ID: 27960504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.