BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

599 related articles for article (PubMed ID: 28042678)

  • 21. Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress.
    Johnson SM; Lim FL; Finkler A; Fromm H; Slabas AR; Knight MR
    BMC Genomics; 2014 Jun; 15(1):456. PubMed ID: 24916767
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis.
    He GH; Xu JY; Wang YX; Liu JM; Li PS; Chen M; Ma YZ; Xu ZS
    BMC Plant Biol; 2016 May; 16(1):116. PubMed ID: 27215938
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination.
    Ramegowda V; Senthil-Kumar M
    J Plant Physiol; 2015 Mar; 176():47-54. PubMed ID: 25546584
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systemic signaling during abiotic stress combination in plants.
    Zandalinas SI; Fichman Y; Devireddy AR; Sengupta S; Azad RK; Mittler R
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13810-13820. PubMed ID: 32471943
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An osmotin from the resurrection plant Tripogon loliiformis (TlOsm) confers tolerance to multiple abiotic stresses in transgenic rice.
    Le TTT; Williams B; Mundree SG
    Physiol Plant; 2018 Jan; 162(1):13-34. PubMed ID: 28466470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing drought tolerance in C(4) crops.
    Lopes MS; Araus JL; van Heerden PD; Foyer CH
    J Exp Bot; 2011 May; 62(9):3135-53. PubMed ID: 21511912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact on physiology and malting quality of barley exposed to heat, drought and their combination during different growth stages under controlled environment.
    Mahalingam R; Bregitzer P
    Physiol Plant; 2019 Feb; 165(2):277-289. PubMed ID: 30238998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils.
    Shabala S; Bose J; Fuglsang AT; Pottosin I
    J Exp Bot; 2016 Feb; 67(4):1015-31. PubMed ID: 26507891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The combined effect of drought stress and heat shock on gene expression in tobacco.
    Rizhsky L; Liang H; Mittler R
    Plant Physiol; 2002 Nov; 130(3):1143-51. PubMed ID: 12427981
    [TBL] [Abstract][Full Text] [Related]  

  • 30. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress.
    Rizhsky L; Liang H; Shuman J; Shulaev V; Davletova S; Mittler R
    Plant Physiol; 2004 Apr; 134(4):1683-96. PubMed ID: 15047901
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches.
    Jin Z; Zhuang Q; Tan Z; Dukes JS; Zheng B; Melillo JM
    Glob Chang Biol; 2016 Sep; 22(9):3112-26. PubMed ID: 27251794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systems biology-based approaches toward understanding drought tolerance in food crops.
    Jogaiah S; Govind SR; Tran LS
    Crit Rev Biotechnol; 2013 Mar; 33(1):23-39. PubMed ID: 22364373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The ABC of abscisic acid action in plant drought stress responses].
    Leung J; Valon C; Moreau B; Boeglin M; Lefoulon C; Joshi-Saha A; Chérel I
    Biol Aujourdhui; 2012; 206(4):301-12. PubMed ID: 23419257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses.
    Li PS; Yu TF; He GH; Chen M; Zhou YB; Chai SC; Xu ZS; Ma YZ
    BMC Genomics; 2014 Nov; 15(1):1009. PubMed ID: 25416131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress.
    Witt S; Galicia L; Lisec J; Cairns J; Tiessen A; Araus JL; Palacios-Rojas N; Fernie AR
    Mol Plant; 2012 Mar; 5(2):401-17. PubMed ID: 22180467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate.
    Jubany-Marí T; Munné-Bosch S; Alegre L
    Plant Physiol Biochem; 2010 May; 48(5):351-8. PubMed ID: 20199867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Role of micro-organisms in adapting plants to environmental stress conditions].
    Hirt H
    Biol Aujourdhui; 2012; 206(4):285-90. PubMed ID: 23419255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 14-3-3 proteins: Macro-regulators with great potential for improving abiotic stress tolerance in plants.
    Liu Q; Zhang S; Liu B
    Biochem Biophys Res Commun; 2016 Aug; 477(1):9-13. PubMed ID: 27233603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria.
    Vurukonda SS; Vardharajula S; Shrivastava M; SkZ A
    Microbiol Res; 2016 Mar; 184():13-24. PubMed ID: 26856449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kresoxim-methyl primes Medicago truncatula plants against abiotic stress factors via altered reactive oxygen and nitrogen species signalling leading to downstream transcriptional and metabolic readjustment.
    Filippou P; Antoniou C; Obata T; Van Der Kelen K; Harokopos V; Kanetis L; Aidinis V; Van Breusegem F; Fernie AR; Fotopoulos V
    J Exp Bot; 2016 Mar; 67(5):1259-74. PubMed ID: 26712823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.