BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28042996)

  • 1. Individual difference in β-band corticomuscular coherence and its relation to force steadiness during isometric voluntary ankle dorsiflexion in healthy humans.
    Ushiyama J; Yamada J; Liu M; Ushiba J
    Clin Neurophysiol; 2017 Feb; 128(2):303-311. PubMed ID: 28042996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle fatigue-induced enhancement of corticomuscular coherence following sustained submaximal isometric contraction of the tibialis anterior muscle.
    Ushiyama J; Katsu M; Masakado Y; Kimura A; Liu M; Ushiba J
    J Appl Physiol (1985); 2011 May; 110(5):1233-40. PubMed ID: 21393470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Between-subject variance in the magnitude of corticomuscular coherence during tonic isometric contraction of the tibialis anterior muscle in healthy young adults.
    Ushiyama J; Suzuki T; Masakado Y; Hase K; Kimura A; Liu M; Ushiba J
    J Neurophysiol; 2011 Sep; 106(3):1379-88. PubMed ID: 21653712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of functional and directed corticomuscular connectivity during tonic ankle muscle contraction across childhood and adolescence.
    Spedden ME; Jensen P; Terkildsen CU; Jensen NJ; Halliday DM; Lundbye-Jensen J; Nielsen JB; Geertsen SS
    Neuroimage; 2019 May; 191():350-360. PubMed ID: 30818025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical stimulation of the common peroneal nerve and its effects on the relationship between corticomuscular coherence and motor control in healthy adults.
    Koseki T; Kudo D; Katagiri N; Nanba S; Nito M; Tanabe S; Yamaguchi T
    BMC Neurosci; 2021 Oct; 22(1):61. PubMed ID: 34645385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta-range EEG-EMG coherence with isometric compensation for increasing modulated low-level forces.
    Chakarov V; Naranjo JR; Schulte-Mönting J; Omlor W; Huethe F; Kristeva R
    J Neurophysiol; 2009 Aug; 102(2):1115-20. PubMed ID: 19458142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prolonged reaction time during episodes of elevated β-band corticomuscular coupling and associated oscillatory muscle activity.
    Matsuya R; Ushiyama J; Ushiba J
    J Appl Physiol (1985); 2013 Apr; 114(7):896-904. PubMed ID: 23393066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory interneuron circuits at cortical and spinal levels are associated with individual differences in corticomuscular coherence during isometric voluntary contraction.
    Matsuya R; Ushiyama J; Ushiba J
    Sci Rep; 2017 Mar; 7():44417. PubMed ID: 28290507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contraction level-related modulation of corticomuscular coherence differs between the tibialis anterior and soleus muscles in humans.
    Ushiyama J; Masakado Y; Fujiwara T; Tsuji T; Hase K; Kimura A; Liu M; Ushiba J
    J Appl Physiol (1985); 2012 Apr; 112(8):1258-67. PubMed ID: 22302959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticomuscular synchronization with small and large dynamic force output.
    Andrykiewicz A; Patino L; Naranjo JR; Witte M; Hepp-Reymond MC; Kristeva R
    BMC Neurosci; 2007 Nov; 8():101. PubMed ID: 18042289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ascending beta oscillation from finger muscle to sensorimotor cortex contributes to enhanced steady-state isometric contraction in humans.
    Lim M; Kim JS; Kim M; Chung CK
    Clin Neurophysiol; 2014 Oct; 125(10):2036-45. PubMed ID: 24618217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for beta corticomuscular coherence during human standing balance: Effects of stance width, vision, and support surface.
    Jacobs JV; Wu G; Kelly KM
    Neuroscience; 2015 Jul; 298():1-11. PubMed ID: 25869620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpha band cortico-muscular coherence occurs in healthy individuals during mechanically-induced tremor.
    Budini F; McManus LM; Berchicci M; Menotti F; Macaluso A; Di Russo F; Lowery MM; De Vito G
    PLoS One; 2014; 9(12):e115012. PubMed ID: 25514444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnification of visual feedback modulates corticomuscular and intermuscular coherences differently in young and elderly adults.
    Watanabe T; Nojima I; Mima T; Sugiura H; Kirimoto H
    Neuroimage; 2020 Oct; 220():117089. PubMed ID: 32592849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reorganization of corticomuscular coherence during a transition between sensorimotor states.
    Mehrkanoon S; Breakspear M; Boonstra TW
    Neuroimage; 2014 Oct; 100():692-702. PubMed ID: 24993895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. It is not all about phase: amplitude dynamics in corticomuscular interactions.
    Bayraktaroglu Z; von Carlowitz-Ghori K; Curio G; Nikulin VV
    Neuroimage; 2013 Jan; 64():496-504. PubMed ID: 22960151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurophysiological, behavioural and perceptual differences between wrist flexion and extension related to sensorimotor monitoring as shown by corticomuscular coherence.
    Divekar NV; John LR
    Clin Neurophysiol; 2013 Jan; 124(1):136-47. PubMed ID: 22959414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticospinal interaction during isometric compensation for modulated forces with different frequencies.
    Naranjo JR; Wang X; Schulte-Mönting J; Huethe F; Maurer C; Hepp-Reymond MC; Kristeva R
    BMC Neurosci; 2010 Dec; 11():157. PubMed ID: 21194447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output.
    Kristeva R; Patino L; Omlor W
    Neuroimage; 2007 Jul; 36(3):785-92. PubMed ID: 17493837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower-Limb Motor Assessment With Corticomuscular Coherence of Multiple Muscles During Ankle Dorsiflexion After Stroke.
    Xu R; Zhang H; Shi X; Liang J; Wan C; Ming D
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():160-168. PubMed ID: 36288216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.