These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 28043781)
1. The application of physiological loading using a dynamic, multi-axis spine simulator. Holsgrove TP; Miles AW; Gheduzzi S Med Eng Phys; 2017 Mar; 41():74-80. PubMed ID: 28043781 [TBL] [Abstract][Full Text] [Related]
2. Design and validation of a novel Cartesian biomechanical testing system with coordinated 6DOF real-time load control: application to the lumbar spine (L1-S, L4-L5). Kelly BP; Bennett CR J Biomech; 2013 Jul; 46(11):1948-54. PubMed ID: 23764173 [TBL] [Abstract][Full Text] [Related]
3. Moment measurements in dynamic and quasi-static spine segment testing using eccentric compression are susceptible to artifacts based on loading configuration. Van Toen C; Carter JW; Oxland TR; Cripton PA J Biomech Eng; 2014 Dec; 136(12):124505. PubMed ID: 25322158 [TBL] [Abstract][Full Text] [Related]
4. Can extra-articular strains be used to measure facet contact forces in the lumbar spine? An in-vitro biomechanical study. Zhu QA; Park YB; Sjovold SG; Niosi CA; Wilson DC; Cripton PA; Oxland TR Proc Inst Mech Eng H; 2008 Feb; 222(2):171-84. PubMed ID: 18441753 [TBL] [Abstract][Full Text] [Related]
5. The equivalence of multi-axis spine systems: Recommended stiffness limits using a standardized testing protocol. Holsgrove TP; Amin DB; Pascual SR; Ding B; Welch WC; Gheduzzi S; Miles AW; Winkelstein BA; Costi JJ J Biomech; 2018 Mar; 70():59-66. PubMed ID: 28951045 [TBL] [Abstract][Full Text] [Related]
6. Dynamic, six-axis stiffness matrix characteristics of the intact intervertebral disc and a disc replacement. Holsgrove TP; Gill HS; Miles AW; Gheduzzi S Proc Inst Mech Eng H; 2015 Nov; 229(11):769-77. PubMed ID: 26503838 [TBL] [Abstract][Full Text] [Related]
7. Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems. Brodke DS; Gollogly S; Bachus KN; Alexander Mohr R; Nguyen BK Spine (Phila Pa 1976); 2003 Aug; 28(16):1794-801. PubMed ID: 12923465 [TBL] [Abstract][Full Text] [Related]
9. The development of a dynamic, six-axis spine simulator. Holsgrove TP; Gheduzzi S; Gill HS; Miles AW Spine J; 2014 Jul; 14(7):1308-17. PubMed ID: 24321131 [TBL] [Abstract][Full Text] [Related]
10. Motion segment stiffness measured without physiological levels of axial compressive preload underestimates the in vivo values in all six degrees of freedom. Gardner-Morse MG; Stokes IA; Churchill D; Badger G Stud Health Technol Inform; 2002; 91():167-72. PubMed ID: 15457717 [TBL] [Abstract][Full Text] [Related]
11. The dynamic, six-axis stiffness matrix testing of porcine spinal specimens. Holsgrove TP; Gill HS; Miles AW; Gheduzzi S Spine J; 2015 Jan; 15(1):176-84. PubMed ID: 25224452 [TBL] [Abstract][Full Text] [Related]
12. The dynamic flexion/extension properties of the lumbar spine in vitro using a novel pendulum system. Crisco JJ; Fujita L; Spenciner DB J Biomech; 2007; 40(12):2767-73. PubMed ID: 17367798 [TBL] [Abstract][Full Text] [Related]
13. Relevance of using a compressive preload in the cervical spine: an experimental and numerical simulating investigation. Barrey C; Rousseau MA; Persohn S; Campana S; Perrin G; Skalli W Eur J Orthop Surg Traumatol; 2015 Jul; 25 Suppl 1():S155-65. PubMed ID: 25845316 [TBL] [Abstract][Full Text] [Related]
14. Reaction Forces and Flexion-Extension Moments Imposed on Functional Spinal Units With Constrained and Unconstrained In Vitro Testing Systems. Zehr JD; Callaghan JP J Biomech Eng; 2022 May; 144(5):. PubMed ID: 34897374 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical evaluation of a new total posterior-element replacement system. Wilke HJ; Schmidt H; Werner K; Schmölz W; Drumm J Spine (Phila Pa 1976); 2006 Nov; 31(24):2790-6; discussion 2797. PubMed ID: 17108830 [TBL] [Abstract][Full Text] [Related]
16. Robotic application of a dynamic resultant force vector using real-time load-control: simulation of an ideal follower load on Cadaveric L4-L5 segments. Bennett CR; Kelly BP J Biomech; 2013 Aug; 46(12):2087-92. PubMed ID: 23809771 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis. Rohlmann A; Burra NK; Zander T; Bergmann G Eur Spine J; 2007 Aug; 16(8):1223-31. PubMed ID: 17206401 [TBL] [Abstract][Full Text] [Related]
18. Sagittal rotational stiffness and damping increase in a porcine lumbar spine with increased or prolonged loading. Zondervan RL; Popovich JM; Radcliffe CJ; Pathak PK; Reeves NP J Biomech; 2016 Feb; 49(4):624-7. PubMed ID: 26892899 [TBL] [Abstract][Full Text] [Related]
19. Dynamic lumbar pedicle screw-rod stabilization: in vitro biomechanical comparison with standard rigid pedicle screw-rod stabilization. Bozkuş H; Senoğlu M; Baek S; Sawa AG; Ozer AF; Sonntag VK; Crawford NR J Neurosurg Spine; 2010 Feb; 12(2):183-9. PubMed ID: 20121354 [TBL] [Abstract][Full Text] [Related]
20. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load. Zirbel SA; Stolworthy DK; Howell LL; Bowden AE Spine J; 2013 Sep; 13(9):1134-47. PubMed ID: 23507531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]