BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28043819)

  • 1. Joint genome-wide prediction in several populations accounting for randomness of genotypes: A hierarchical Bayes approach. I: Multivariate Gaussian priors for marker effects and derivation of the joint probability mass function of genotypes.
    Martínez CA; Khare K; Banerjee A; Elzo MA
    J Theor Biol; 2017 Mar; 417():8-19. PubMed ID: 28043819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint genome-wide prediction in several populations accounting for randomness of genotypes: A hierarchical Bayes approach. II: Multivariate spike and slab priors for marker effects and derivation of approximate Bayes and fractional Bayes factors for the complete family of models.
    Martínez CA; Khare K; Banerjee A; Elzo MA
    J Theor Biol; 2017 Mar; 417():131-141. PubMed ID: 28088357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling correlated marker effects in genome-wide prediction via Gaussian concentration graph models.
    Martínez CA; Khare K; Rahman S; Elzo MA
    J Theor Biol; 2018 Jan; 437():67-78. PubMed ID: 29055677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gaussian covariance graph models accounting for correlated marker effects in genome-wide prediction.
    Martínez CA; Khare K; Rahman S; Elzo MA
    J Anim Breed Genet; 2017 Oct; 134(5):412-421. PubMed ID: 28804930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Variational Bayes Genomic-Enabled Prediction Model with Genotype × Environment Interaction.
    Montesinos-López OA; Montesinos-López A; Crossa J; Montesinos-López JC; Luna-Vázquez FJ; Salinas-Ruiz J; Herrera-Morales JR; Buenrostro-Mariscal R
    G3 (Bethesda); 2017 Jun; 7(6):1833-1853. PubMed ID: 28391241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies.
    Zhao T; Fernando R; Cheng H
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34499126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid bayesian approach for genome-wide association studies on related individuals.
    Yazdani A; Dunson DB
    Bioinformatics; 2015 Dec; 31(24):3890-6. PubMed ID: 26323717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of alternative approaches to single-trait genomic prediction using genotyped and non-genotyped Hanwoo beef cattle.
    Lee J; Cheng H; Garrick D; Golden B; Dekkers J; Park K; Lee D; Fernando R
    Genet Sel Evol; 2017 Jan; 49(1):2. PubMed ID: 28093065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variable selection models for genomic selection using whole-genome sequence data and singular value decomposition.
    Meuwissen THE; Indahl UG; Ødegård J
    Genet Sel Evol; 2017 Dec; 49(1):94. PubMed ID: 29281962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational strategies for alternative single-step Bayesian regression models with large numbers of genotyped and non-genotyped animals.
    Fernando RL; Cheng H; Golden BL; Garrick DJ
    Genet Sel Evol; 2016 Dec; 48(1):96. PubMed ID: 27931187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single Marker Family-Based Association Analysis Not Conditional on Parental Information.
    Namkung J; Won S
    Methods Mol Biol; 2017; 1666():409-439. PubMed ID: 28980257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of linkage disequilibrium and co-segregation information to the accuracy of genomic prediction.
    Sun X; Fernando R; Dekkers J
    Genet Sel Evol; 2016 Oct; 48(1):77. PubMed ID: 27729012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic Prediction Accounting for Residual Heteroskedasticity.
    Ou Z; Tempelman RJ; Steibel JP; Ernst CW; Bates RO; Bello NM
    G3 (Bethesda); 2015 Nov; 6(1):1-13. PubMed ID: 26564950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Genomic Bayesian Multi-trait and Multi-environment Model.
    Montesinos-López OA; Montesinos-López A; Crossa J; Toledo FH; Pérez-Hernández O; Eskridge KM; Rutkoski J
    G3 (Bethesda); 2016 Sep; 6(9):2725-44. PubMed ID: 27342738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits.
    MacLeod IM; Bowman PJ; Vander Jagt CJ; Haile-Mariam M; Kemper KE; Chamberlain AJ; Schrooten C; Hayes BJ; Goddard ME
    BMC Genomics; 2016 Feb; 17():144. PubMed ID: 26920147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide mapping of quantitative trait loci in admixed populations using mixed linear model and Bayesian multiple regression analysis.
    Toosi A; Fernando RL; Dekkers JCM
    Genet Sel Evol; 2018 Jun; 50(1):32. PubMed ID: 29914353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metafounders are related to F
    Garcia-Baccino CA; Legarra A; Christensen OF; Misztal I; Pocrnic I; Vitezica ZG; Cantet RJ
    Genet Sel Evol; 2017 Mar; 49(1):34. PubMed ID: 28283016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction models for clustered data with informative priors for the random effects: a simulation study.
    Ni H; Groenwold RHH; Nielen M; Klugkist I
    BMC Med Res Methodol; 2018 Aug; 18(1):83. PubMed ID: 30081875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide prediction using Bayesian additive regression trees.
    Waldmann P
    Genet Sel Evol; 2016 Jun; 48(1):42. PubMed ID: 27286957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementing a QTL detection study (GWAS) using genomic prediction methodology.
    Garrick DJ; Fernando RL
    Methods Mol Biol; 2013; 1019():275-98. PubMed ID: 23756895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.