These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 28044151)

  • 41. High-yielding and photolabile approaches to the covalent attachment of biomolecules to surfaces via hydrazone chemistry.
    Lee JH; Domaille DW; Noh H; Oh T; Choi C; Jin S; Cha JN
    Langmuir; 2014 Jul; 30(28):8452-60. PubMed ID: 24972257
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid access to novel 1,2,3-triazolo-heterocyclic scaffolds via tandem Knoevenagel condensation/azide-alkyne 1,3-dipolar cycloaddition reaction in one pot.
    Maurya RA; Adiyala PR; Chandrasekhar D; Reddy CN; Kapure JS; Kamal A
    ACS Comb Sci; 2014 Sep; 16(9):466-77. PubMed ID: 24945583
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemical modification of functionalized polyhydroxyalkanoates via "Click" chemistry: A proof of concept.
    Nkrumah-Agyeefi S; Scholz C
    Int J Biol Macromol; 2017 Feb; 95():796-808. PubMed ID: 27919815
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications.
    Johansson JR; Beke-Somfai T; Said Stålsmeden A; Kann N
    Chem Rev; 2016 Dec; 116(23):14726-14768. PubMed ID: 27960271
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polyaddition of Azide-Containing Norbornene-Based Monomer through Strain-Promoted 1,3-Dipolar Cycloaddition Reaction.
    Zhang X; Zhang Q; Wu Y; Feng C; Xie C; Fan X; Li P
    Macromol Rapid Commun; 2016 Aug; 37(16):1311-7. PubMed ID: 27240093
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis and relative stability of 3,5-diacyl-4,5-dihydro-1H-pyrazoles prepared by dipolar cycloaddition of enones and alpha-diazoketones.
    Jung ME; Min SJ; Houk KN; Ess D
    J Org Chem; 2004 Dec; 69(26):9085-9. PubMed ID: 15609941
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Visible light-photocatalysed carbazole synthesis via a formal (4+2) cycloaddition of indole-derived bromides and alkynes.
    Yuan ZG; Wang Q; Zheng A; Zhang K; Lu LQ; Tang Z; Xiao WJ
    Chem Commun (Camb); 2016 Apr; 52(29):5128-31. PubMed ID: 26987917
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lewis base catalyzed aerobic oxidative intermolecular azide-zwitterion cycloaddition.
    Li W; Wang J
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14186-90. PubMed ID: 25319520
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of highly substituted tetrahydrofurans by catalytic polar-radical-crossover cycloadditions of alkenes and alkenols.
    Grandjean JM; Nicewicz DA
    Angew Chem Int Ed Engl; 2013 Apr; 52(14):3967-71. PubMed ID: 23440762
    [No Abstract]   [Full Text] [Related]  

  • 50. A highly active and magnetically recoverable tris(triazolyl)-Cu(I) catalyst for alkyne-azide cycloaddition reactions.
    Wang D; Etienne L; Echeverria M; Moya S; Astruc D
    Chemistry; 2014 Apr; 20(14):4047-54. PubMed ID: 24574335
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Total synthesis of cephalosporolide E via a tandem radical/polar crossover reaction. The use of the radical cations under nonoxidative conditions in total synthesis.
    Cortezano-Arellano O; Quintero L; Sartillo-Piscil F
    J Org Chem; 2015 Mar; 80(5):2601-8. PubMed ID: 25642728
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Virus-glycopolymer conjugates by copper(I) catalysis of atom transfer radical polymerization and azide-alkyne cycloaddition.
    Sen Gupta S; Raja KS; Kaltgrad E; Strable E; Finn MG
    Chem Commun (Camb); 2005 Sep; (34):4315-7. PubMed ID: 16113733
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Strain-promoted azide-alkyne cycloaddition with ruthenium(II)-azido complexes.
    Cruchter T; Harms K; Meggers E
    Chemistry; 2013 Dec; 19(49):16682-9. PubMed ID: 24173767
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ruthenium-catalyzed azide-alkyne cycloaddition: scope and mechanism.
    Boren BC; Narayan S; Rasmussen LK; Zhang L; Zhao H; Lin Z; Jia G; Fokin VV
    J Am Chem Soc; 2008 Jul; 130(28):8923-30. PubMed ID: 18570425
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 'Clicking' on the nanoscale: 1,3-dipolar cycloaddition of terminal acetylenes on azide functionalized, nanometric surface templates with nanometer resolution.
    Haensch C; Hoeppener S; Schubert US
    Nanotechnology; 2009 Apr; 20(13):135302. PubMed ID: 19420493
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tandem polar/radical crossover sequences for the formation of fused and bridged bicyclic nitrogen heterocycles involving radical ionic chain reactions, and alkene radical cation intermediates, performed under reducing conditions: scope and limitations.
    Crich D; Ranganathan K; Neelamkavil S; Huang X
    J Am Chem Soc; 2003 Jul; 125(26):7942-7. PubMed ID: 12823015
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The curious case of mesityl azide and its reactivity with bpyNiEt2.
    Otten BM; Figg TM; Cundari TR
    Inorg Chem; 2014 Nov; 53(21):11633-9. PubMed ID: 25325403
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Type II intramolecular [5+2] cycloaddition: facile synthesis of highly functionalized bridged ring systems.
    Mei G; Liu X; Qiao C; Chen W; Li CC
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1754-8. PubMed ID: 25504815
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Harnessing the versatility of hydrazones through electrosynthetic oxidative transformations.
    Claraz A
    Beilstein J Org Chem; 2024; 20():1988-2004. PubMed ID: 39161708
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis of α-Branched Amines by Three- and Four-Component C-H Functionalization Employing a Readily Diversifiable Hydrazone Directing Group.
    Brandes DS; Muma AD; Ellman JA
    Org Lett; 2021 Dec; 23(24):9597-9601. PubMed ID: 34881902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.