These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 28044274)

  • 1. Bioremediation of copper-contaminated soils by bacteria.
    Cornu JY; Huguenot D; Jézéquel K; Lollier M; Lebeau T
    World J Microbiol Biotechnol; 2017 Feb; 33(2):26. PubMed ID: 28044274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria.
    Andreazza R; Okeke BC; Lambais MR; Bortolon L; de Melo GW; Camargo FA
    Chemosphere; 2010 Nov; 81(9):1149-54. PubMed ID: 20937516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper immobilization by biochar and microbial community abundance in metal-contaminated soils.
    Moore F; González ME; Khan N; Curaqueo G; Sanchez-Monedero M; Rilling J; Morales E; Panichini M; Mutis A; Jorquera M; Mejias J; Hirzel J; Meier S
    Sci Total Environ; 2018 Mar; 616-617():960-969. PubMed ID: 29096960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens.
    Chen YX; Wang YP; Lin Q; Luo YM
    Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of stimulation of copper bioleaching on microbial community in vineyard soil and copper mining waste.
    Andreazza R; Okeke BC; Pieniz S; Bortolon L; Lambais MR; Camargo FA
    Biol Trace Elem Res; 2012 Apr; 146(1):124-33. PubMed ID: 21947860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quick rhizobacterial selection tests for the remediation of copper contaminated soils.
    Braud AM; Hubert M; Gaudin P; Lebeau T
    J Appl Microbiol; 2015 Aug; 119(2):435-45. PubMed ID: 26042640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of aerobic and anaerobic [3H]leucine incorporation assays for determining pollution-induced bacterial community tolerance in copper-polluted, irrigated soils.
    Aaen KN; Holm PE; Priemé A; Hung NN; Brandt KK
    Environ Toxicol Chem; 2011 Mar; 30(3):588-95. PubMed ID: 21298704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of copper bioaccumulation and translocation in Jatropha curcas grown in a contaminated soil.
    Ahmadpour P; Soleimani M; Ahmadpour F; Abdu A
    Int J Phytoremediation; 2014; 16(5):454-68. PubMed ID: 24912228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metallomics: lessons for metalliferous soil remediation.
    Haferburg G; Kothe E
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1271-80. PubMed ID: 20532755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable chelate enhances the phytoextraction of copper by Oenothera picensis grown in copper-contaminated acid soils.
    González I; Cortes A; Neaman A; Rubio P
    Chemosphere; 2011 Jul; 84(4):490-6. PubMed ID: 21470657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper exposure to soil under single and repeated application: Selection for the microbial community tolerance and effects on the dissipation of antibiotics.
    Liu B; Li Y; Gao S; Chen X
    J Hazard Mater; 2017 Mar; 325():129-135. PubMed ID: 27930997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of compost and biodegradable chelate addition on phytoextraction of copper by Oenothera picensis grown in Cu-contaminated acid soils.
    González I; Neaman A; Cortés A; Rubio P
    Chemosphere; 2014 Jan; 95():111-5. PubMed ID: 24034893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Progress in bioremediation of copper-contaminated soils].
    Xu J; Wang W; Wang H; Zhang H
    Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):471-480. PubMed ID: 32237541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioaugmentation of copper polluted soil microcosms with Amycolatopsis tucumanensis to diminish phytoavailable copper for Zea mays plants.
    Albarracín VH; Amoroso MJ; Abate CM
    Chemosphere; 2010 Mar; 79(2):131-7. PubMed ID: 20163821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cover crops influence soil microorganisms and phytoextraction of copper from a moderately contaminated vineyard.
    Mackie KA; Schmidt HP; Müller T; Kandeler E
    Sci Total Environ; 2014 Dec; 500-501():34-43. PubMed ID: 25217742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current and emerging trends in bioaugmentation of organic contaminated soils: A review.
    Gao D; Zhao H; Wang L; Li Y; Tang T; Bai Y; Liang H
    J Environ Manage; 2022 Oct; 320():115799. PubMed ID: 35930885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications.
    Phieler R; Voit A; Kothe E
    Adv Biochem Eng Biotechnol; 2014; 141():211-35. PubMed ID: 23719709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrepancy of the microbial response to elevated copper between freshly spiked and long-term contaminated soils.
    Oorts K; Bronckaers H; Smolders E
    Environ Toxicol Chem; 2006 Mar; 25(3):845-53. PubMed ID: 16566170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil.
    Cui H; Fan Y; Yang J; Xu L; Zhou J; Zhu Z
    Chemosphere; 2016 Oct; 161():233-241. PubMed ID: 27434253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds.
    Mrozik A; Piotrowska-Seget Z
    Microbiol Res; 2010 Jul; 165(5):363-75. PubMed ID: 19735995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.