These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. [Analysis of cytoskeleton structural changes in the granular cells of the frog bladder during the stimulation of water transport]. Snigirevskaia ES; Komissarchik IaIu Tsitologiia; 1987 Feb; 29(2):150-5. PubMed ID: 3495056 [TBL] [Abstract][Full Text] [Related]
7. The roles of actin cytoskeleton and microtubules for membrane recycling of a food vacuole in Tetrahymena thermophila. Sugita M; Nakano K; Sato M; Toyooka K; Numata O Cell Motil Cytoskeleton; 2009 Jul; 66(7):371-7. PubMed ID: 19418560 [TBL] [Abstract][Full Text] [Related]
8. [Structural rearrangements of microfilaments and granular cells of the frog bladder during induction of water transport: fluorescent microscopic, immunocytochemical and electron microscopic studies]. Gorshkov AN; Komissarchik IaIu Tsitologiia; 1997; 39(11):1032-7. PubMed ID: 9505345 [TBL] [Abstract][Full Text] [Related]
9. Possible roles for microtubules and microfilaments in ADH action on toad urinary bladder. Kachadorian WA; Ellis SJ; Muller J Am J Physiol; 1979 Jan; 236(1):F14-20. PubMed ID: 107810 [TBL] [Abstract][Full Text] [Related]
10. Alterations in membrane-associated particle distribution during antidiuretic challenge in frog urinary bladder epithelium. Bourguet J; Chevalier J; Hugon JS Biophys J; 1976 Jun; 16(6):627-39. PubMed ID: 179631 [TBL] [Abstract][Full Text] [Related]
11. Effects of colchicine and cytochalasin B on vasopressin- and cyclic adenosine monophosphate-induced changes in toad urinary bladder. LeFurgey A; Dratwa M; Tisher CC Lab Invest; 1981 Oct; 45(4):308-15. PubMed ID: 6272020 [TBL] [Abstract][Full Text] [Related]
12. Isolation of large sheets of apical material from frog urinary bladder epithelial cells by freeze-fracture. Verbavatz JM; Calamita G; Hugon JS; Bourguet J Biol Cell; 1989; 66(1-2):91-7. PubMed ID: 2804463 [TBL] [Abstract][Full Text] [Related]
13. Reorganization of keratin intermediate filaments by the drug-induced disruption of microfilaments in cultured human keratinocytes. Kitajima Y; Inoue S; Yaoita H J Invest Dermatol; 1986 Nov; 87(5):565-9. PubMed ID: 2430025 [TBL] [Abstract][Full Text] [Related]
14. Tropomyosin co-localizes with actin microfilaments and microtubules within supporting cells of the inner ear. Slepecky N; Chamberlain SC Cell Tissue Res; 1987 Apr; 248(1):63-6. PubMed ID: 3552243 [TBL] [Abstract][Full Text] [Related]
15. Role of the cytoskeleton in the control of transcellular water flow by vasopressin in amphibian urinary bladder. Pearl M; Taylor A Biol Cell; 1985; 55(3):163-72. PubMed ID: 2939904 [No Abstract] [Full Text] [Related]
16. Sea urchin oocytes possess elaborate cortical arrays of microfilaments, microtubules, and intermediate filaments. Boyle JA; Ernst SG Dev Biol; 1989 Jul; 134(1):72-84. PubMed ID: 2471666 [TBL] [Abstract][Full Text] [Related]
17. The role of microfilaments and microtubules in apical growth and dimorphism of Candida albicans. Yokoyama K; Kaji H; Nishimura K; Miyaji M J Gen Microbiol; 1990 Jun; 136(6):1067-75. PubMed ID: 2200842 [TBL] [Abstract][Full Text] [Related]
18. Role of microfilaments and microtubules in the invasion of INT-407 cells by Campylobacter jejuni. Biswas D; Itoh K; Sasakawa C Microbiol Immunol; 2003; 47(6):469-73. PubMed ID: 12906108 [TBL] [Abstract][Full Text] [Related]
19. The effects of taxol on the organization of the cytoskeleton in cultured ovarian granulosa cells. Herman B; Langevin MA; Albertini DF Eur J Cell Biol; 1983 Jul; 31(1):34-45. PubMed ID: 6137363 [TBL] [Abstract][Full Text] [Related]