BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28045003)

  • 1. Solid-state nanopore localization by controlled breakdown of selectively thinned membranes.
    Carlsen AT; Briggs K; Hall AR; Tabard-Cossa V
    Nanotechnology; 2017 Feb; 28(8):085304-85304. PubMed ID: 28045003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High fidelity moving Z-score based controlled breakdown fabrication of solid-state nanopore.
    Roshan KA; Tang Z; Guan W
    Nanotechnology; 2019 Mar; 30(9):095502. PubMed ID: 30523901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of Single Nanopores with Diameters of 20-50 nm in Silicon Nitride Membranes Using Laser-Assisted Controlled Breakdown.
    Ying C; Houghtaling J; Eggenberger OM; Guha A; Nirmalraj P; Awasthi S; Tian J; Mayer M
    ACS Nano; 2018 Nov; 12(11):11458-11470. PubMed ID: 30335956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized Nanopore Fabrication via Controlled Breakdown.
    Ying C; Ma T; Xu L; Rahmani M
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution.
    Briggs K; Charron M; Kwok H; Le T; Chahal S; Bustamante J; Waugh M; Tabard-Cossa V
    Nanotechnology; 2015 Feb; 26(8):084004. PubMed ID: 25648336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photothermally Assisted Thinning of Silicon Nitride Membranes for Ultrathin Asymmetric Nanopores.
    Yamazaki H; Hu R; Zhao Q; Wanunu M
    ACS Nano; 2018 Dec; 12(12):12472-12481. PubMed ID: 30457833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown.
    Tahvildari R; Beamish E; Tabard-Cossa V; Godin M
    Lab Chip; 2015 Mar; 15(6):1407-11. PubMed ID: 25631885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple Fabrication of Solid-State Nanopores on a Carbon Film.
    Takai N; Shoji K; Maki T; Kawano R
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-10-nm-thick SiN nanopore membranes fabricated using the SiO
    Yanagi I; Takeda KI
    Nanotechnology; 2021 Jul; 32(41):. PubMed ID: 34214991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA Translocation in Nanometer Thick Silicon Nanopores.
    Rodríguez-Manzo JA; Puster M; Nicolaï A; Meunier V; Drndić M
    ACS Nano; 2015 Jun; 9(6):6555-64. PubMed ID: 26035079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.
    Schmidt T; Zhang M; Sychugov I; Roxhed N; Linnros J
    Nanotechnology; 2015 Aug; 26(31):314001. PubMed ID: 26180043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-state nanopore fabrication by automated controlled breakdown.
    Waugh M; Briggs K; Gunn D; Gibeault M; King S; Ingram Q; Jimenez AM; Berryman S; Lomovtsev D; Andrzejewski L; Tabard-Cossa V
    Nat Protoc; 2020 Jan; 15(1):122-143. PubMed ID: 31836867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state nanopore fabrication in LiCl by controlled dielectric breakdown.
    Bello J; Shim J
    Biomed Microdevices; 2018 Apr; 20(2):38. PubMed ID: 29680876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of multiple nanopores in a SiN
    Wang Y; Ying C; Zhou W; de Vreede L; Liu Z; Tian J
    Sci Rep; 2018 Jan; 8(1):1234. PubMed ID: 29352158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane thickness dependence of nanopore formation with a focused helium ion beam.
    Sawafta F; Carlsen AT; Hall AR
    Sensors (Basel); 2014 May; 14(5):8150-61. PubMed ID: 24806739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of solid-state nanopore enlargement under electrical stress.
    Leung C; Briggs K; Laberge MP; Peng S; Waugh M; Tabard-Cossa V
    Nanotechnology; 2020 Oct; 31(44):44LT01. PubMed ID: 32698174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage.
    Puster M; Rodríguez-Manzo JA; Balan A; Drndić M
    ACS Nano; 2013 Dec; 7(12):11283-9. PubMed ID: 24224888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast Fabrication of Solid-State Nanopores for DNA Molecule Analysis.
    Zhang Y; Ma D; Gu Z; Zhan L; Sha J
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-step breakdown of a SiN membrane for nanopore fabrication: Formation of thin portion and penetration.
    Yanagi I; Hamamura H; Akahori R; Takeda KI
    Sci Rep; 2018 Jul; 8(1):10129. PubMed ID: 29973672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.