These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28045003)

  • 21. Rapid fabrication of solid-state nanopores with high reproducibility over a large area using a helium ion microscope.
    Xia D; Huynh C; McVey S; Kobler A; Stern L; Yuan Z; Ling XS
    Nanoscale; 2018 Mar; 10(11):5198-5204. PubMed ID: 29493685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process.
    Yanagi I; Ishida T; Fujisaki K; Takeda K
    Sci Rep; 2015 Oct; 5():14656. PubMed ID: 26424588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanopore Fabrication Made Easy: A Portable, Affordable Microcontroller-Assisted Approach for Tailored Pore Formation via Controlled Breakdown.
    Bandara YMNDY; Karawdeniya BI; Dutt S; Kluth P; Tricoli A
    Anal Chem; 2024 Feb; 96(5):2124-2134. PubMed ID: 38277343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlling nanopore size, shape and stability.
    van den Hout M; Hall AR; Wu MY; Zandbergen HW; Dekker C; Dekker NH
    Nanotechnology; 2010 Mar; 21(11):115304. PubMed ID: 20173233
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controllable Fabrication of Sub-10 nm Graphene Nanopores via Helium Ion Microscopy and DNA Detection.
    Yuan Z; Lin Y; Hu J; Wang C
    Biosensors (Basel); 2024 Mar; 14(4):. PubMed ID: 38667151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlled Focused Ion Beam Milling of Composite Solid State Nanopore Arrays for Molecule Sensing.
    Fürjes P
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31766129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical impedance spectroscopy for black lipid membranes fused with channel protein supported on solid-state nanopore.
    Khan MS; Dosoky NS; Berdiev BK; Williams JD
    Eur Biophys J; 2016 Dec; 45(8):843-852. PubMed ID: 27480285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering adjustable two-pore devices for parallel ion transport and DNA translocations.
    Chou YC; Chen J; Lin CY; Drndić M
    J Chem Phys; 2021 Mar; 154(10):105102. PubMed ID: 33722020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time visualization and sub-diffraction limit localization of nanometer-scale pore formation by dielectric breakdown.
    Zrehen A; Gilboa T; Meller A
    Nanoscale; 2017 Nov; 9(42):16437-16445. PubMed ID: 29058736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown.
    Pud S; Verschueren D; Vukovic N; Plesa C; Jonsson MP; Dekker C
    Nano Lett; 2015 Oct; 15(10):7112-7. PubMed ID: 26333767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast Fabrication Nanopores on a PMMA Membrane by a Local High Electric Field Controlled Breakdown.
    Fang S; Zeng D; He S; Li Y; Pang Z; Wang Y; Liang L; Weng T; Xie W; Wang D
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanopore fabrication by controlled dielectric breakdown.
    Kwok H; Briggs K; Tabard-Cossa V
    PLoS One; 2014; 9(3):e92880. PubMed ID: 24658537
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanopore Fabrication via Transient High Electric Field Controlled Breakdown and Detection of Single RNA Molecules.
    Yin B; Fang S; Zhou D; Liang L; Wang L; Wang Z; Wang D; Yuan J
    ACS Appl Bio Mater; 2020 Sep; 3(9):6368-6375. PubMed ID: 35021767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On Stochastic Reduction in Laser-Assisted Dielectric Breakdown for Programmable Nanopore Fabrication.
    Tang Z; Dong M; He X; Guan W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13383-13391. PubMed ID: 33705089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optically-Monitored Nanopore Fabrication Using a Focused Laser Beam.
    Gilboa T; Zrehen A; Girsault A; Meller A
    Sci Rep; 2018 Jun; 8(1):9765. PubMed ID: 29950607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of solid-state nanopores for sensing co-translocational deformation of nano-liposomes.
    Goyal G; Darvish A; Kim MJ
    Analyst; 2015 Jul; 140(14):4865-73. PubMed ID: 25811537
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrathin suspended nanopores with surface plasmon resonance fabricated by combined colloidal lithography and film transfer.
    Junesch J; Sannomiya T
    ACS Appl Mater Interfaces; 2014 May; 6(9):6322-31. PubMed ID: 24701958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.
    Lan WJ; Edwards MA; Luo L; Perera RT; Wu X; Martin CR; White HS
    Acc Chem Res; 2016 Nov; 49(11):2605-2613. PubMed ID: 27689816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding Electrical Conduction and Nanopore Formation During Controlled Breakdown.
    Fried JP; Swett JL; Nadappuram BP; Fedosyuk A; Sousa PM; Briggs DP; Ivanov AP; Edel JB; Mol JA; Yates JR
    Small; 2021 Sep; 17(37):e2102543. PubMed ID: 34337856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.