These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28045010)

  • 1. Electric- and magnetic-field dependence of the electronic and optical properties of phosphorene quantum dots.
    Li LL; Moldovan D; Xu W; Peeters FM
    Nanotechnology; 2017 Feb; 28(8):085702. PubMed ID: 28045010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic and optical properties of Janus black arsenic-phosphorus AsP quantum dots under magnetic field.
    Yan X; Ke Q; Cai Y
    Nanotechnology; 2022 Apr; 33(26):. PubMed ID: 35316792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magneto-optical properties of bilayer phosphorene quantum dots.
    Zare M; Haghdoust S
    Phys Chem Chem Phys; 2021 Aug; 23(32):17645-17655. PubMed ID: 34370800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Edge effects on the intrinsic magnetism in ferromagnetic triangular phosphorene quantum dots using fully spin-polarized calculations.
    Hoseini SS; Faizabadi E
    J Phys Condens Matter; 2021 Jul; 33(35):. PubMed ID: 34144540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic and optical responses of quasi-one-dimensional phosphorene nanoribbons to strain and electric field.
    Zhang L; Hao Y
    Sci Rep; 2018 Apr; 8(1):6089. PubMed ID: 29666507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical study on strain tunable electronic structure and optical transitions in armchair black phosphorene nanoribbons.
    Liu P; Zhou X; Xiao X; Zhou B; Zhou G
    J Phys Condens Matter; 2020 Jul; 32(28):285301. PubMed ID: 32150733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy spectra and optical transitions in germanene quantum dots.
    Herath TM; Apalkov V
    J Phys Condens Matter; 2016 Apr; 28(16):165301. PubMed ID: 27008912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice.
    Li XJ; Yu JH; Luo K; Wu ZH; Yang W
    Nanotechnology; 2018 Apr; 29(17):174001. PubMed ID: 29437157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Edge states and quantum phase transition in graphene under in-plane effective exchange fields.
    Liu ZF; Wu QP; Chen AX; Xiao XB; Liu NH; Miao GX
    J Phys Condens Matter; 2017 Feb; 29(4):045304. PubMed ID: 27897148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum transport through the edge states of zigzag phosphorene nanoribbons in presence of a single point defect: analytic Green's function method.
    Amini M; Soltani M
    J Phys Condens Matter; 2019 May; 31(21):215301. PubMed ID: 30794998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorene oxide: stability and electronic properties of a novel two-dimensional material.
    Wang G; Pandey R; Karna SP
    Nanoscale; 2015 Jan; 7(2):524-31. PubMed ID: 25412501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric field tuning of spin splitting in topological insulator quantum dots doped with a single magnetic ion.
    Li X; Yang W; Lin L; Wu Z
    Sci Rep; 2019 Jun; 9(1):9080. PubMed ID: 31235703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic competition between strain and electric field stimuli in tuning EELS of phosphorene.
    Yarmohammadi M; Hoi BD; Phuong LTT
    Sci Rep; 2021 Feb; 11(1):3716. PubMed ID: 33580112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy.
    Woomer AH; Farnsworth TW; Hu J; Wells RA; Donley CL; Warren SC
    ACS Nano; 2015 Sep; 9(9):8869-84. PubMed ID: 26256770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the electric field control of the electronic and optical properties of strongly-coupled multi-layered quantum dot molecules.
    Usman M
    Nanoscale; 2015 Oct; 7(39):16516-29. PubMed ID: 26395806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons.
    Huang YC; Chang CP; Lin MF
    Nanotechnology; 2007 Dec; 18(49):495401. PubMed ID: 20442470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The optical conductivity of bilayer zigzag-edge graphene nanoribbons with external transverse electric fields.
    Zhu WH; Liu ZZ; Ding GH
    J Phys Condens Matter; 2012 Sep; 24(35):355302. PubMed ID: 22885614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Donor impurity related optical and electronic properties of cylindrical GaAs-Al
    Heyn C; Duque CA
    Sci Rep; 2020 Jun; 10(1):9155. PubMed ID: 32513977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum manifestations in electronic properties of bilayer phosphorene nanoribbons.
    Zhang J; Li SQ; Liu H; Li M; Gao J
    Phys Chem Chem Phys; 2023 Jan; 25(2):1214-1219. PubMed ID: 36524708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Donor Impurity in CdS/ZnS Spherical Quantum Dots under Applied Electric and Magnetic Fields.
    Hasanirokh K; Radu A; Duque CA
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.