These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 28045149)
1. Raman optical activity of tetra-alanine in the poly(l-proline) II type peptide conformation. Furuta M; Fujisawa T; Urago H; Eguchi T; Shingae T; Takahashi S; Blanch EW; Unno M Phys Chem Chem Phys; 2017 Jan; 19(3):2078-2086. PubMed ID: 28045149 [TBL] [Abstract][Full Text] [Related]
2. Vibrational Raman optical activity characterization of poly(l-proline) II helix in alanine oligopeptides. McColl IH; Blanch EW; Hecht L; Kallenbach NR; Barron LD J Am Chem Soc; 2004 Apr; 126(16):5076-7. PubMed ID: 15099084 [TBL] [Abstract][Full Text] [Related]
3. Raman optical activity of a cyclic dipeptide analyzed by quantum chemical calculations combined with molecular dynamics simulations. Urago H; Suga T; Hirata T; Kodama H; Unno M J Phys Chem B; 2014 Jun; 118(24):6767-74. PubMed ID: 24873951 [TBL] [Abstract][Full Text] [Related]
4. Residual structure in disordered peptides and unfolded proteins from multivariate analysis and ab initio simulation of Raman optical activity data. Zhu F; Kapitan J; Tranter GE; Pudney PD; Isaacs NW; Hecht L; Barron LD Proteins; 2008 Feb; 70(3):823-33. PubMed ID: 17729278 [TBL] [Abstract][Full Text] [Related]
5. Molecules-in-molecules fragment-based method for the calculation of chiroptical spectra of large molecules: Vibrational circular dichroism and Raman optical activity spectra of alanine polypeptides. Jose KV; Raghavachari K Chirality; 2016 Dec; 28(12):755-768. PubMed ID: 27897329 [TBL] [Abstract][Full Text] [Related]
6. Envisaging Structural Insight of a Terminally Protected Proline Dipeptide by Raman Spectroscopy and Density Functional Theory Analyses. Das S; Pal U; Chatterjee M; Pramanik SK; Banerji B; Maiti NC J Phys Chem A; 2016 Dec; 120(49):9829-9840. PubMed ID: 27973793 [TBL] [Abstract][Full Text] [Related]
7. Amide I Raman optical activity of polypeptides: fragment approximation. Choi JH; Cho M J Chem Phys; 2009 Jan; 130(1):014503. PubMed ID: 19140618 [TBL] [Abstract][Full Text] [Related]
8. The conformation of tetraalanine in water determined by polarized Raman, FT-IR, and VCD spectroscopy. Schweitzer-Stenner R; Eker F; Griebenow K; Cao X; Nafie LA J Am Chem Soc; 2004 Mar; 126(9):2768-76. PubMed ID: 14995194 [TBL] [Abstract][Full Text] [Related]
9. Intense chiral signal from α-helical poly-L-alanine observed in low-frequency Raman optical activity. Yamamoto S; Ishiro S; Kessler J; Bouř P Phys Chem Chem Phys; 2021 Dec; 23(46):26501-26509. PubMed ID: 34806737 [TBL] [Abstract][Full Text] [Related]
10. Neural-network analysis of the vibrational spectra of N-acetyl L-alanyl N'-methyl amide conformational states. Bohr HG; Frimand K; Jalkanen KJ; Nieminen RM; Suhai S Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021905. PubMed ID: 11497618 [TBL] [Abstract][Full Text] [Related]
12. Demonstration of the ring conformation in polyproline by the Raman optical activity. Kapitán J; Baumruk V; Bour P J Am Chem Soc; 2006 Feb; 128(7):2438-43. PubMed ID: 16478200 [TBL] [Abstract][Full Text] [Related]
13. Conformational manifold of alpha-aminoisobutyric acid (Aib) containing alanine-based tripeptides in aqueous solution explored by vibrational spectroscopy, electronic circular dichroism spectroscopy, and molecular dynamics simulations. Schweitzer-Stenner R; Gonzales W; Bourne GT; Feng JA; Marshall GR J Am Chem Soc; 2007 Oct; 129(43):13095-109. PubMed ID: 17918837 [TBL] [Abstract][Full Text] [Related]
14. Calculations of vibrationally resonant sum- and difference-frequency-generation spectra of chiral molecules in solutions: three-wave-mixing vibrational optical activity. Choi JH; Cheon S; Cho M J Chem Phys; 2010 Feb; 132(7):074506. PubMed ID: 20170236 [TBL] [Abstract][Full Text] [Related]
15. Conformations of alanine-based peptides in water probed by FTIR, Raman, vibrational circular dichroism, electronic circular dichroism, and NMR spectroscopy. Schweitzer-Stenner R; Measey T; Kakalis L; Jordan F; Pizzanelli S; Forte C; Griebenow K Biochemistry; 2007 Feb; 46(6):1587-96. PubMed ID: 17279623 [TBL] [Abstract][Full Text] [Related]
16. Is polyproline II helix the killer conformation? A Raman optical activity study of the amyloidogenic prefibrillar intermediate of human lysozyme. Blanch EW; Morozova-Roche LA; Cochran DA; Doig AJ; Hecht L; Barron LD J Mol Biol; 2000 Aug; 301(2):553-63. PubMed ID: 10926527 [TBL] [Abstract][Full Text] [Related]
17. The structure of tri-proline in water probed by polarized Raman, Fourier transform infrared, vibrational circular dichroism, and electric ultraviolet circular dichroism spectroscopy. Schweitzer-Stenner R; Eker F; Perez A; Griebenow K; Cao X; Nafie LA Biopolymers; 2003; 71(5):558-68. PubMed ID: 14635096 [TBL] [Abstract][Full Text] [Related]
18. Conformational analysis of XA and AX dipeptides in water by electronic circular dichroism and 1H NMR spectroscopy. Hagarman A; Measey T; Doddasomayajula RS; Dragomir I; Eker F; Griebenow K; Schweitzer-Stenner R J Phys Chem B; 2006 Apr; 110(13):6979-86. PubMed ID: 16571011 [TBL] [Abstract][Full Text] [Related]
19. Raman optical activity demonstrates poly(L-proline) II helix in the N-terminal region of the ovine prion protein: implications for function and misfunction. Blanch EW; Gill AC; Rhie AG; Hope J; Hecht L; Nielsen K; Barron LD J Mol Biol; 2004 Oct; 343(2):467-76. PubMed ID: 15451674 [TBL] [Abstract][Full Text] [Related]
20. Solvated states of poly-L-alanine α-helix explored by Raman optical activity. Yamamoto S; Furukawa T; Bouř P; Ozaki Y J Phys Chem A; 2014 May; 118(20):3655-62. PubMed ID: 24758541 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]