These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28045212)

  • 101. Dual stimuli-responsive N-phthaloylchitosan-graft-(poly(N-isopropylacrylamide)-block-poly(acrylic acid)) copolymer prepared via RAFT polymerization.
    Zhang K; Wang Z; Li Y; Jiang Z; Hu Q; Liu M; Zhao Q
    Carbohydr Polym; 2013 Jan; 92(1):662-7. PubMed ID: 23218351
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Ultrasonic degradation of poly(methyl methacrylate-co-alkyl acrylate) copolymers.
    Konaganti VK; Madras G
    Ultrason Sonochem; 2010 Feb; 17(2):403-8. PubMed ID: 19775925
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Photodegradable neutral-cationic brush block copolymers for nonviral gene delivery.
    Hu X; Li Y; Liu T; Zhang G; Liu S
    Chem Asian J; 2014 Aug; 9(8):2148-55. PubMed ID: 24799446
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Synthesis, characterization and properties of a physically and chemically gelling polymer system using poly(NIPAAm-co-HEMA-acrylate) and poly(NIPAAm-co-cysteamine).
    Bearat HH; Lee BH; Valdez J; Vernon BL
    J Biomater Sci Polym Ed; 2011; 22(10):1299-318. PubMed ID: 20594409
    [TBL] [Abstract][Full Text] [Related]  

  • 105. A novel temperature-responsive polymer as a gene vector.
    Ma Y; Hou S; Ji B; Yao Y; Feng X
    Macromol Biosci; 2010 Feb; 10(2):202-10. PubMed ID: 19904723
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Exploiting Addition-Fragmentation Reactions to Produce Low Dispersity Poly(isobornyl acrylate) and Blocky Copolymers by Semibatch Radical Polymerization.
    Heidarzadeh N; Bygott EG; Hutchinson RA
    Macromol Rapid Commun; 2020 Aug; 41(16):e2000288. PubMed ID: 32725678
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Oxygen-Demanding Photocontrolled RAFT Polymerization Under Ambient Conditions.
    Peng Y; Liu S; Wang L; Xu Y; Wu Z; Chen H
    Macromol Rapid Commun; 2022 Apr; 43(8):e2100920. PubMed ID: 35138013
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Interaction of Cationic, Anionic, and Nonionic Macroraft Homo- and Copolymers with Laponite Clay.
    Chaparro TC; Silva RD; Monteiro IS; Barros-Timmons A; Giudici R; Martins Dos Santos A; Bourgeat-Lami E
    Langmuir; 2019 Sep; 35(35):11512-11523. PubMed ID: 31404489
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Zwitterionic Amino Acid-Derived Polyacrylates as Smart Materials Exhibiting Cellular Specificity and Therapeutic Activity.
    Leiske MN; Mazrad ZAI; Zelcak A; Wahi K; Davis TP; McCarroll JA; Holst J; Kempe K
    Biomacromolecules; 2022 Jun; 23(6):2374-2387. PubMed ID: 35508075
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Bifunctional Initiators as Tools to Track Chain Transfer during the CROP of 2-Oxazolines.
    Sahn M; Bandelli D; Dirauf M; Weber C; Schubert US
    Macromol Rapid Commun; 2017 Oct; 38(19):. PubMed ID: 28837760
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Sustainable elastomers derived from cellulose, rosin and fatty acid by a combination of "graft from" RAFT and isocyanate chemistry.
    Cheng Z; Liu Y; Zhang D; Lu C; Wang C; Xu F; Wang J; Chu F
    Int J Biol Macromol; 2019 Jun; 131():387-395. PubMed ID: 30880052
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Synthesis of well-defined conjugated copolymers by RAFT polymerization using cysteine and glutathione-based chain transfer agents.
    Zhao Y; Perrier S
    Chem Commun (Camb); 2007 Nov; (41):4294-6. PubMed ID: 18217610
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Defined High Molar Mass Poly(2-Oxazoline)s.
    Monnery BD; Jerca VV; Sedlacek O; Verbraeken B; Cavill R; Hoogenboom R
    Angew Chem Int Ed Engl; 2018 Nov; 57(47):15400-15404. PubMed ID: 30303605
    [TBL] [Abstract][Full Text] [Related]  

  • 114. B(C
    Fuchise K; Tsuchida S; Takada K; Chen Y; Satoh T; Kakuchi T
    ACS Macro Lett; 2014 Oct; 3(10):1015-1019. PubMed ID: 35610785
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Radical Approach to Thioester-Containing Polymers.
    Smith RA; Fu G; McAteer O; Xu M; Gutekunst WR
    J Am Chem Soc; 2019 Jan; 141(4):1446-1451. PubMed ID: 30636410
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Sustainable Myrcene-Based Elastomers via a Convenient Anionic Polymerization.
    Lamparelli DH; Kleybolte MM; Winnacker M; Capacchione C
    Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33803378
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Influence of Alkyl Acrylate Nature on Rheological Properties of Polyacrylonitrile Terpolymers Solutions, Spinnability and Mechanical Characteristics of Fibers.
    Skvortsov IY; Maksimov NM; Kuzin MS; Toms RV; Varfolomeeva LA; Chernikova EV; Kulichikhin VG
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614445
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Shape Matters: Highly Selective Antimicrobial Bottle Brush Copolymers via a One-Pot RAFT Polymerization Approach.
    Lehnen AC; Bapolisi AM; Krass M; AlSawaf A; Kurki J; Kersting S; Fuchs H; Hartlieb M
    Biomacromolecules; 2022 Dec; 23(12):5350-5360. PubMed ID: 36455024
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Determination of Reactivity Ratios from Binary Copolymerization Using the k-Nearest Neighbor Non-Parametric Regression.
    Fazakas-Anca IS; Modrea A; Vlase S
    Polymers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771367
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Modulating Insulin Aggregation with Charge Variable Cholic Acid-Derived Polymers.
    Bera A; Sahoo S; Goswami K; Das SK; Ghosh P; De P
    Biomacromolecules; 2021 Nov; 22(11):4833-4845. PubMed ID: 34674527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.