These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 28045217)
1. 3D Printing of Aniline Tetramer-Grafted-Polyethylenimine and Pluronic F127 Composites for Electroactive Scaffolds. Dong SL; Han L; Du CX; Wang XY; Li LH; Wei Y Macromol Rapid Commun; 2017 Feb; 38(4):. PubMed ID: 28045217 [TBL] [Abstract][Full Text] [Related]
2. Hydrophilized 3D porous scaffold for effective plasmid DNA delivery. Oh SH; Kim TH; Jang SH; Im GI; Lee JH J Biomed Mater Res A; 2011 Jun; 97(4):441-50. PubMed ID: 21484988 [TBL] [Abstract][Full Text] [Related]
3. 3D bioprinting of an electroactive and self-healing polysaccharide hydrogels. Wang YL; Han L; Zhang XL; Cao L; Hu K; Li LH; Wei Y J Tissue Eng Regen Med; 2022 Jan; 16(1):76-85. PubMed ID: 34414667 [TBL] [Abstract][Full Text] [Related]
4. Self-gelling electroactive hydrogels based on chitosan-aniline oligomers/agarose for neural tissue engineering with on-demand drug release. Bagheri B; Zarrintaj P; Surwase SS; Baheiraei N; Saeb MR; Mozafari M; Kim YC; Park OO Colloids Surf B Biointerfaces; 2019 Dec; 184():110549. PubMed ID: 31610417 [TBL] [Abstract][Full Text] [Related]
5. High-molecular-weight polyethyleneimine conjuncted pluronic for gene transfer agents. Liang W; Gong H; Yin D; Lu S; Fu Q Chem Pharm Bull (Tokyo); 2011; 59(9):1094-101. PubMed ID: 21881251 [TBL] [Abstract][Full Text] [Related]
6. Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting. Müller M; Becher J; Schnabelrauch M; Zenobi-Wong M Biofabrication; 2015 Aug; 7(3):035006. PubMed ID: 26260872 [TBL] [Abstract][Full Text] [Related]
7. Temperature-sensitive pluronic/poly(ethylenimine) nanocapsules for thermally triggered disruption of intracellular endosomal compartment. Choi SH; Lee SH; Park TG Biomacromolecules; 2006 Jun; 7(6):1864-70. PubMed ID: 16768408 [TBL] [Abstract][Full Text] [Related]
8. Triblock Copolymer Bioinks in Hydrogel Three-Dimensional Printing for Regenerative Medicine: A Focus on Pluronic F127. Shamma RN; Sayed RH; Madry H; El Sayed NS; Cucchiarini M Tissue Eng Part B Rev; 2022 Apr; 28(2):451-463. PubMed ID: 33820451 [TBL] [Abstract][Full Text] [Related]
9. Enhancement on oral absorption of paclitaxel by multifunctional pluronic micelles. Li Y; Bi Y; Xi Y; Li L J Drug Target; 2013 Feb; 21(2):188-99. PubMed ID: 23126604 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and characterization of ophthalmically compatible hydrogels composed of poly(dimethyl siloxane-urethane)/Pluronic F127. Lin CH; Lin WC; Yang MC Colloids Surf B Biointerfaces; 2009 Jun; 71(1):36-44. PubMed ID: 19188049 [TBL] [Abstract][Full Text] [Related]
11. Nanostructuring biosynthetic hydrogels for tissue engineering: a cellular and structural analysis. Frisman I; Seliktar D; Bianco-Peled H Acta Biomater; 2012 Jan; 8(1):51-60. PubMed ID: 21855662 [TBL] [Abstract][Full Text] [Related]
12. Use of the polycation polyethyleneimine to improve the physical properties of alginate-hyaluronic acid hydrogel during fabrication of tissue repair scaffolds. Rajaram A; Schreyer DJ; Chen DX J Biomater Sci Polym Ed; 2015; 26(7):433-45. PubMed ID: 25661399 [TBL] [Abstract][Full Text] [Related]
13. Thermoresponsive and Injectable Composite Hydrogels of Cellulose Nanocrystals and Pluronic F127. Kushan E; Senses E ACS Appl Bio Mater; 2021 Apr; 4(4):3507-3517. PubMed ID: 35014435 [TBL] [Abstract][Full Text] [Related]
14. Direct 3D printing of thermosensitive AOP127-oxidized dextran hydrogel with dual dynamic crosslinking and high toughness. Li Z; Liu L; Chen Y Carbohydr Polym; 2022 Sep; 291():119616. PubMed ID: 35698412 [TBL] [Abstract][Full Text] [Related]
15. Influence of Pluronic F127 on the distribution and functionality of inkjet-printed biomolecules in porous nitrocellulose substrates. Mujawar LH; van Amerongen A; Norde W Talanta; 2015 Jan; 131():541-7. PubMed ID: 25281138 [TBL] [Abstract][Full Text] [Related]
16. Chitin nanocrystals assisted 3D printing of polycitrate thermoset bioelastomers. Gu S; Tian Y; Liang K; Ji Y Carbohydr Polym; 2021 Mar; 256():117549. PubMed ID: 33483056 [TBL] [Abstract][Full Text] [Related]
17. Improved near infrared-mediated hydrogel formation using diacrylated Pluronic F127-coated upconversion nanoparticles. Gwon K; Jo EJ; Sahu A; Lee JY; Kim MG; Tae G Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():77-84. PubMed ID: 29853148 [TBL] [Abstract][Full Text] [Related]
18. Electrohydrodynamic 3D Printing Scaffolds for Repair of Achilles Tendon Defect in Rats. Zhang H; Pei Z; Wang C; Li M; Zhang H; Qu J Tissue Eng Part A; 2021 Oct; 27(19-20):1343-1354. PubMed ID: 33573468 [TBL] [Abstract][Full Text] [Related]
19. Direct 3D printing of a tough hydrogel incorporated with carbon nanotubes for bone regeneration. Cui H; Yu Y; Li X; Sun Z; Ruan J; Wu Z; Qian J; Yin J J Mater Chem B; 2019 Dec; 7(45):7207-7217. PubMed ID: 31663588 [TBL] [Abstract][Full Text] [Related]
20. Facile synthesis of degradable and electrically conductive polysaccharide hydrogels. Guo B; Finne-Wistrand A; Albertsson AC Biomacromolecules; 2011 Jul; 12(7):2601-9. PubMed ID: 21574634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]