These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28045267)

  • 1. Perfect Thermal Emission by Nanoscale Transmission Line Resonators.
    Liu B; Gong W; Yu B; Li P; Shen S
    Nano Lett; 2017 Feb; 17(2):666-672. PubMed ID: 28045267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectrally tunable nanocomposite metamaterials as near-perfect emitters for mid-infrared thermal radiation management.
    Cao J; Liu X; Chang Q; Yang Z; Zhou H; Fan T
    Phys Chem Chem Phys; 2020 Dec; 22(48):28012-28020. PubMed ID: 33300901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrically Driven Hyperbolic Nanophotonic Resonators as High Speed, Spectrally Selective Thermal Radiators.
    Roberts JA; Ho PH; Yu SJ; Fan JA
    Nano Lett; 2022 Jul; 22(14):5832-5840. PubMed ID: 35849552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-area, lithography-free, narrow-band and highly directional thermal emitter.
    Liu X; Li Z; Wen Z; Wu M; Lu J; Chen X; Zhao X; Wang T; Ji R; Zhang Y; Sun L; Zhang B; Xu H; Zhou J; Hao J; Wang S; Chen X; Dai N; Lu W; Shen X
    Nanoscale; 2019 Nov; 11(42):19742-19750. PubMed ID: 31626257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiation Enhancement by Graphene Oxide on Microelectromechanical System Emitters for Highly Selective Gas Sensing.
    Li N; Yuan H; Xu L; Tao J; Ng DKT; Lee LYT; Cheam DD; Zeng Y; Qiang B; Wang Q; Cai H; Singh N; Zhao D
    ACS Sens; 2019 Oct; 4(10):2746-2753. PubMed ID: 31524375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Hermitian Selective Thermal Emitters using Metal-Semiconductor Hybrid Resonators.
    Doiron CF; Naik GV
    Adv Mater; 2019 Nov; 31(44):e1904154. PubMed ID: 31531907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linearly thermal-tunable near-infrared ultra-narrowband metamaterial perfect absorber with low power and a large modulation depth based on a four-nanorod-coupled a-silicon resonator.
    Zhao L; Yang X; Niu Q; He Z; Dong S
    Opt Lett; 2019 Aug; 44(15):3885-3888. PubMed ID: 31368993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks.
    Qu Y; Cai L; Luo H; Lu J; Qiu M; Li Q
    Opt Express; 2018 Feb; 26(4):4279-4287. PubMed ID: 29475279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Taming the blackbody with infrared metamaterials as selective thermal emitters.
    Liu X; Tyler T; Starr T; Starr AF; Jokerst NM; Padilla WJ
    Phys Rev Lett; 2011 Jul; 107(4):045901. PubMed ID: 21867022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics.
    Molesky S; Dewalt CJ; Jacob Z
    Opt Express; 2013 Jan; 21 Suppl 1():A96-110. PubMed ID: 23389280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Infrared Metamaterial Emitter for Gas Sensing Application.
    Xu R; Lin YS
    Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32722016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degenerate quasi-normal mode theory for near-field radiation between plasmonic structures.
    Li J; Li Z; Shen S
    Opt Express; 2020 Nov; 28(23):34123-34136. PubMed ID: 33182889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters.
    Sakr E; Bermel P
    Opt Express; 2017 Oct; 25(20):A880-A895. PubMed ID: 29041299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room temperature growth of ultrathin Au nanowires with high areal density over large areas by in situ functionalization of substrate.
    Kundu S; Leelavathi A; Madras G; Ravishankar N
    Langmuir; 2014 Oct; 30(42):12690-5. PubMed ID: 25279505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-diffractional waveguiding by mid-infrared plasmonic resonators in semiconductor nanowires.
    Tervo EJ; Boyuk DS; Cola BA; Zhang ZM; Filler MA
    Nanoscale; 2018 Mar; 10(12):5708-5716. PubMed ID: 29537041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable mid-infrared selective emitter based on inverse design metasurface for infrared stealth with thermal management.
    Jiang X; Zhang Z; Ma H; Du T; Luo M; Liu D; Yang J
    Opt Express; 2022 May; 30(11):18250-18263. PubMed ID: 36221630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Split-cube-resonator-based metamaterials for polarization-selective asymmetric perfect absorption.
    Tsilipakos O; Xomalis A; Kenanakis G; Farsari M; Soukoulis CM; Economou EN; Kafesaki M
    Sci Rep; 2020 Oct; 10(1):17653. PubMed ID: 33077768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective multi-wavelength infrared emission by stacked gap-plasmon thermal emitters.
    Hsiao HH; Xu BT
    Nanotechnology; 2021 Apr; 32(16):165201. PubMed ID: 33440355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectrally and Spatially Selective Emitters Using Polymer Hybrid Spoof Plasmonics.
    Lee GJ; Kim DH; Heo SY; Song YM
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53206-53214. PubMed ID: 33172255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.