BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 28045268)

  • 1. Reconstitution Properties of Sucrose and Maltodextrins.
    Dupas J; Girard V; Forny L
    Langmuir; 2017 Jan; 33(4):988-995. PubMed ID: 28045268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-solid interactions in amorphous maltodextrin-crystalline sucrose binary mixtures.
    Ghorab MK; Toth SJ; Simpson GJ; Mauer LJ; Taylor LS
    Pharm Dev Technol; 2014 Mar; 19(2):247-56. PubMed ID: 23477494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moisture-Mediated Interactions Between Amorphous Maltodextrins and Crystalline Fructose.
    Thorat A; Marrs KN; Ghorab MK; Meunier V; Forny L; Taylor LS; Mauer LJ
    J Food Sci; 2017 May; 82(5):1142-1156. PubMed ID: 28319658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moisture sorption behaviors, water activity-temperature relationships, and physical stability traits of spices, herbs, and seasoning blends containing crystalline and amorphous ingredients.
    Voelker AL; Sommer AA; Mauer LJ
    Food Res Int; 2020 Oct; 136():109608. PubMed ID: 32846628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glass transition temperature of glucose, sucrose, and trehalose: an experimental and in silico study.
    Simperler A; Kornherr A; Chopra R; Bonnet PA; Jones W; Motherwell WD; Zifferer G
    J Phys Chem B; 2006 Oct; 110(39):19678-84. PubMed ID: 17004837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicochemical properties and storage stability of lutein microcapsules prepared with maltodextrins and sucrose by spray drying.
    Kuang P; Zhang H; Bajaj PR; Yuan Q; Tang J; Chen S; Sablani SS
    J Food Sci; 2015 Feb; 80(2):E359-69. PubMed ID: 25597919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Dec; 104(12):4241-4256. PubMed ID: 26422647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical α-relaxations and stickiness of milk solids/maltodextrin systems around glass transition.
    Silalai N; Roos YH
    J Sci Food Agric; 2011 Nov; 91(14):2529-36. PubMed ID: 21445896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-solid interactions between amorphous maltodextrins and crystalline sodium chloride.
    Ghorab MK; Marrs K; Taylor LS; Mauer LJ
    Food Chem; 2014 Feb; 144():26-35. PubMed ID: 24099538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the moisture sorption behavior of amorphous sucrose using a dynamic humidity generating instrument.
    Yu X; Kappes SM; Bello-Perez LA; Schmidt SJ
    J Food Sci; 2008 Jan; 73(1):E25-35. PubMed ID: 18211350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of DE-value on the physicochemical properties of maltodextrin for melt extrusion processes.
    Castro N; Durrieu V; Raynaud C; Rouilly A
    Carbohydr Polym; 2016 Jun; 144():464-73. PubMed ID: 27083839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of β-carotene in amorphous polymer matrices. Effect of water sorption properties and physical state.
    Ramoneda XA; Ponce-Cevallos PA; del Pilar Buera M; Elizalde BE
    J Sci Food Agric; 2011 Nov; 91(14):2587-93. PubMed ID: 21681762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dextrose equivalence of maltodextrins determines particle morphology development during single sessile droplet drying.
    Siemons I; Politiek RGA; Boom RM; van der Sman RGM; Schutyser MAI
    Food Res Int; 2020 May; 131():108988. PubMed ID: 32247469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of compression on crystallization behavior of freeze-dried amorphous sucrose.
    Imamura K; Nomura M; Tanaka K; Kataoka N; Oshitani J; Imanaka H; Nakanishi K
    J Pharm Sci; 2010 Mar; 99(3):1452-63. PubMed ID: 19670297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial glass transition temperature variations in polymer glass: application to a maltodextrin-water system.
    van Sleeuwen RM; Zhang S; Normand V
    Biomacromolecules; 2012 Mar; 13(3):787-97. PubMed ID: 22268547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulation, lyophilization and solid-state properties of a pegylated protein.
    Mosharraf M; Malmberg M; Fransson J
    Int J Pharm; 2007 May; 336(2):215-32. PubMed ID: 17207591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid dispersions of itraconazole for inhalation with enhanced dissolution, solubility and dispersion properties.
    Duret C; Wauthoz N; Sebti T; Vanderbist F; Amighi K
    Int J Pharm; 2012 May; 428(1-2):103-13. PubMed ID: 22414388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glass transition and enthalpy relaxation of amorphous food saccharides: a review.
    Liu Y; Bhandari B; Zhou W
    J Agric Food Chem; 2006 Aug; 54(16):5701-17. PubMed ID: 16881667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeze drying of L-arginine/sucrose-based protein formulations, part I: influence of formulation and arginine counter ion on the critical formulation temperature, product performance and protein stability.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Jul; 104(7):2345-58. PubMed ID: 25994980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbohydrate polymers in amorphous states: an integrated thermodynamic and nanostructural investigation.
    Kilburn D; Claude J; Schweizer T; Alam A; Ubbink J
    Biomacromolecules; 2005; 6(2):864-79. PubMed ID: 15762653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.