These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
420 related articles for article (PubMed ID: 28045337)
1. Transcript analysis in two alfalfa salt tolerance selected breeding populations relative to a non-tolerant population. Gruber MY; Xia J; Yu M; Steppuhn H; Wall K; Messer D; Sharpe AG; Acharya SN; Wishart DS; Johnson D; Miller DR; Taheri A Genome; 2017 Feb; 60(2):104-127. PubMed ID: 28045337 [TBL] [Abstract][Full Text] [Related]
2. Analysis of the alfalfa root transcriptome in response to salinity stress. Postnikova OA; Shao J; Nemchinov LG Plant Cell Physiol; 2013 Jul; 54(7):1041-55. PubMed ID: 23592587 [TBL] [Abstract][Full Text] [Related]
3. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms. Lei Y; Xu Y; Hettenhausen C; Lu C; Shen G; Zhang C; Li J; Song J; Lin H; Wu J BMC Plant Biol; 2018 Feb; 18(1):35. PubMed ID: 29448940 [TBL] [Abstract][Full Text] [Related]
4. Comparative Transcriptome Combined with Proteome Analyses Revealed Key Factors Involved in Alfalfa ( Zeng N; Yang Z; Zhang Z; Hu L; Chen L Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30889856 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance. Das P; Majumder AL Funct Integr Genomics; 2019 Jan; 19(1):61-73. PubMed ID: 30046943 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. Peng Z; He S; Gong W; Sun J; Pan Z; Xu F; Lu Y; Du X BMC Genomics; 2014 Sep; 15(1):760. PubMed ID: 25189468 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome analysis of genes and pathways associated with salt tolerance in alfalfa under non-uniform salt stress. Xiong X; Wei YQ; Chen JH; Liu N; Zhang YJ Plant Physiol Biochem; 2020 Jun; 151():323-333. PubMed ID: 32251957 [TBL] [Abstract][Full Text] [Related]
8. Comparative Analysis of the Chrysanthemum Leaf Transcript Profiling in Response to Salt Stress. Wu YH; Wang T; Wang K; Liang QY; Bai ZY; Liu QL; Pan YZ; Jiang BB; Zhang L PLoS One; 2016; 11(7):e0159721. PubMed ID: 27447718 [TBL] [Abstract][Full Text] [Related]
9. Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). Luo D; Zhou Q; Wu Y; Chai X; Liu W; Wang Y; Yang Q; Wang Z; Liu Z BMC Plant Biol; 2019 Jan; 19(1):32. PubMed ID: 30665358 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional profiling of two contrasting genotypes uncovers molecular mechanisms underlying salt tolerance in alfalfa. Kaundal R; Duhan N; Acharya BR; Pudussery MV; Ferreira JFS; Suarez DL; Sandhu D Sci Rep; 2021 Mar; 11(1):5210. PubMed ID: 33664362 [TBL] [Abstract][Full Text] [Related]
11. Transcriptomic analysis of differentially expressed genes in leaves and roots of two alfalfa (Medicago sativa L.) cultivars with different salt tolerance. Bhattarai S; Fu YB; Coulman B; Tanino K; Karunakaran C; Biligetu B BMC Plant Biol; 2021 Oct; 21(1):446. PubMed ID: 34610811 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide expression profiling in leaves and roots of date palm (Phoenix dactylifera L.) exposed to salinity. Yaish MW; Patankar HV; Assaha DVM; Zheng Y; Al-Yahyai R; Sunkar R BMC Genomics; 2017 Mar; 18(1):246. PubMed ID: 28330456 [TBL] [Abstract][Full Text] [Related]
13. Characterization of physiological responses of two alfalfa half-sib families with improved salt tolerance. Anower MR; Mott IW; Peel MD; Wu Y Plant Physiol Biochem; 2013 Oct; 71():103-11. PubMed ID: 23911728 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome Analysis of Ceriops tagal in Saline Environments Using RNA-Sequencing. Xiao X; Hong Y; Xia W; Feng S; Zhou X; Fu X; Zang J; Xiao Y; Niu X; Li C; Chen Y PLoS One; 2016; 11(12):e0167551. PubMed ID: 27936168 [TBL] [Abstract][Full Text] [Related]
15. Multiple Regulatory Networks Are Activated during Cold Stress in Zhou Q; Luo D; Chai X; Wu Y; Wang Y; Nan Z; Yang Q; Liu W; Liu Z Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30326607 [TBL] [Abstract][Full Text] [Related]
16. Comparative transcriptome investigation of global gene expression changes caused by miR156 overexpression in Medicago sativa. Gao R; Austin RS; Amyot L; Hannoufa A BMC Genomics; 2016 Aug; 17(1):658. PubMed ID: 27542359 [TBL] [Abstract][Full Text] [Related]
17. Comparative study of transcriptional and physiological responses to salinity stress in two contrasting Populus alba L. genotypes. Beritognolo I; Harfouche A; Brilli F; Prosperini G; Gaudet M; Brosché M; Salani F; Kuzminsky E; Auvinen P; Paulin L; Kangasjärvi J; Loreto F; Valentini R; Mugnozza GS; Sabatti M Tree Physiol; 2011 Dec; 31(12):1335-55. PubMed ID: 21911439 [TBL] [Abstract][Full Text] [Related]
18. RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress. Hu L; Li H; Chen L; Lou Y; Amombo E; Fu J BMC Genomics; 2015 Aug; 16(1):575. PubMed ID: 26238595 [TBL] [Abstract][Full Text] [Related]