BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 28045452)

  • 1. Design and Experimental Evolution of trans-Splicing Group I Intron Ribozymes.
    Müller UF
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28045452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterodimerization of Group I Ribozymes Enabling Exon Recombination through Pairs of Cooperative trans-Splicing Reactions.
    Tanaka T; Hirata Y; Tominaga Y; Furuta H; Matsumura S; Ikawa Y
    Chembiochem; 2017 Aug; 18(16):1659-1667. PubMed ID: 28556398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trans-splicing with the group I intron ribozyme from Azoarcus.
    Dolan GF; Müller UF
    RNA; 2014 Feb; 20(2):202-13. PubMed ID: 24344321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased efficiency of evolved group I intron spliceozymes by decreased side product formation.
    Amini ZN; Müller UF
    RNA; 2015 Aug; 21(8):1480-9. PubMed ID: 26106216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vivo selection method to optimize trans-splicing ribozymes.
    Olson KE; Müller UF
    RNA; 2012 Mar; 18(3):581-9. PubMed ID: 22274958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spliceozymes: ribozymes that remove introns from pre-mRNAs in trans.
    Amini ZN; Olson KE; Müller UF
    PLoS One; 2014; 9(7):e101932. PubMed ID: 25014025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational prediction of efficient splice sites for trans-splicing ribozymes.
    Meluzzi D; Olson KE; Dolan GF; Arya G; Müller UF
    RNA; 2012 Mar; 18(3):590-602. PubMed ID: 22274956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Group I intron ribozymes.
    Nielsen H
    Methods Mol Biol; 2012; 848():73-89. PubMed ID: 22315064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA reprogramming and repair based on trans-splicing group I ribozymes.
    Fiskaa T; Birgisdottir AB
    N Biotechnol; 2010 Jul; 27(3):194-203. PubMed ID: 20219714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient and specific repair of sickle beta-globin RNA by trans-splicing ribozymes.
    Byun J; Lan N; Long M; Sullenger BA
    RNA; 2003 Oct; 9(10):1254-63. PubMed ID: 13130139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Group II introns: structure and catalytic versatility of large natural ribozymes.
    Lehmann K; Schmidt U
    Crit Rev Biochem Mol Biol; 2003; 38(3):249-303. PubMed ID: 12870716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Group I Intron-Based Therapeutics Through Trans-Splicing Reaction.
    Lee CH; Han SR; Lee SW
    Prog Mol Biol Transl Sci; 2018; 159():79-100. PubMed ID: 30340790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetrahymena thermophila and Candida albicans group I intron-derived ribozymes can catalyze the trans-excision-splicing reaction.
    Dotson PP; Johnson AK; Testa SM
    Nucleic Acids Res; 2008 Sep; 36(16):5281-9. PubMed ID: 18684993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA reprogramming of alpha-mannosidase mRNA sequences in vitro by myxomycete group IC1 and IE ribozymes.
    Fiskaa T; Lundblad EW; Henriksen JR; Johansen SD; Einvik C
    FEBS J; 2006 Jun; 273(12):2789-800. PubMed ID: 16817905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circular ribozymes generated in Escherichia coli using group I self-splicing permuted intron-exon sequences.
    Puttaraju M; Been MD
    J Biol Chem; 1996 Oct; 271(42):26081-7. PubMed ID: 8824250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial group II introns generate genetic diversity by circularization and trans-splicing from a population of intron-invaded mRNAs.
    LaRoche-Johnston F; Monat C; Coulombe S; Cousineau B
    PLoS Genet; 2018 Nov; 14(11):e1007792. PubMed ID: 30462638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimal catalytic domain of a group I self-splicing intron RNA.
    Ikawa Y; Shiraishi H; Inoue T
    Nat Struct Biol; 2000 Nov; 7(11):1032-5. PubMed ID: 11062558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo evolution of a catalytic RNA couples trans-splicing to translation.
    Olson KE; Dolan GF; Müller UF
    PLoS One; 2014; 9(1):e86473. PubMed ID: 24466112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trans-splicing ribozymes for targeted gene delivery.
    Köhler U; Ayre BG; Goodman HM; Haseloff J
    J Mol Biol; 1999 Feb; 285(5):1935-50. PubMed ID: 9925776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA as a drug target: recent patents on the catalytic activity of trans-splicing ribozymes derived from group I intron RNA.
    Johnson IM
    Recent Pat DNA Gene Seq; 2010 Jan; 4(1):17-28. PubMed ID: 20218956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.