BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 28045512)

  • 1. Anion-Cation Mediated Structural Rearrangement of an In-derived Three-Dimensional Interpenetrated Metal-Organic Framework.
    Bellas MK; Mihaly JJ; Zeller M; Genna DT
    Inorg Chem; 2017 Jan; 56(2):950-955. PubMed ID: 28045512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity.
    Wang Z; Tanabe KK; Cohen SM
    Inorg Chem; 2009 Jan; 48(1):296-306. PubMed ID: 19053339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential Solid-State Transformations Involving Consecutive Rearrangements of Secondary Building Units in a Metal-Organic Framework (MOF).
    Dai F; Wang X; Wang Y; Liu Z; Sun D
    Angew Chem Int Ed Engl; 2020 Sep; ():. PubMed ID: 33090692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable Topology in New Families of Heterobimetallic Metal-Organic Frameworks.
    Muldoon PF; Liu C; Miller CC; Koby SB; Gamble Jarvi A; Luo TY; Saxena S; O'Keeffe M; Rosi NL
    J Am Chem Soc; 2018 May; 140(20):6194-6198. PubMed ID: 29719954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement.
    Deria P; Mondloch JE; Karagiaridi O; Bury W; Hupp JT; Farha OK
    Chem Soc Rev; 2014 Aug; 43(16):5896-912. PubMed ID: 24723093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Control of Metal-Organic Framework Bearing N-Heterocyclic Imidazolium Cation and Generation of Highly Stable Porous Structure.
    Kim H; Kim H; Kim K; Lee E
    Inorg Chem; 2019 May; 58(10):6619-6627. PubMed ID: 30920809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resin-assisted solvothermal synthesis of transition metal-organic frameworks.
    Du Y; Thompson AL; Russell N; O'Hare D
    Dalton Trans; 2010 Apr; 39(14):3384-95. PubMed ID: 20379531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification.
    Wang Z; Tanabe KK; Cohen SM
    Chemistry; 2010 Jan; 16(1):212-7. PubMed ID: 19918824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface chemistry of metal-organic frameworks at the liquid-solid interface.
    Zacher D; Schmid R; Wöll C; Fischer RA
    Angew Chem Int Ed Engl; 2011 Jan; 50(1):176-99. PubMed ID: 21190182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalization of metal-organic frameworks through the postsynthetic transformation of olefin side groups.
    Hindelang K; Kronast A; Vagin SI; Rieger B
    Chemistry; 2013 Jun; 19(25):8244-52. PubMed ID: 23640916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switch-On Fluorescence of a Perylene-Dye-Functionalized Metal-Organic Framework through Postsynthetic Modification.
    Dietl C; Hintz H; Rühle B; Schmedt Auf der Günne J; Langhals H; Wuttke S
    Chemistry; 2015 Jul; 21(30):10714-20. PubMed ID: 26037475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Versatile Tailoring of Paddle-Wheel Zn(II) Metal-Organic Frameworks through Single-Crystal-to-Single-Crystal Transformations.
    Pal TK; Neogi S; Bharadwaj PK
    Chemistry; 2015 Nov; 21(45):16083-90. PubMed ID: 26383591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential Solid-State Transformations Involving Consecutive Rearrangements of Secondary Building Units in a Metal-Organic Framework.
    Dai F; Wang X; Wang Y; Liu Z; Sun D
    Angew Chem Int Ed Engl; 2020 Sep; ():. PubMed ID: 32869421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional tolerance in an isoreticular series of highly porous metal-organic frameworks.
    Kim M; Boissonnault JA; Allen CA; Dau PV; Cohen SM
    Dalton Trans; 2012 May; 41(20):6277-82. PubMed ID: 22491705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of interpenetration and gas-sorption properties of metal-organic frameworks by a simple change in ligand design.
    Prasad TK; Suh MP
    Chemistry; 2012 Jul; 18(28):8673-80. PubMed ID: 22678955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications.
    Salunkhe RR; Kaneti YV; Kim J; Kim JH; Yamauchi Y
    Acc Chem Res; 2016 Dec; 49(12):2796-2806. PubMed ID: 27993000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postsynthetic Addition of Ligand Struts in Metal-Organic Frameworks: Effect of Syn/Anti Addition on Framework Structures with Distinct Topologies.
    Xu X; Yang F; Han H; Xu Y; Wei W
    Inorg Chem; 2018 Mar; 57(5):2369-2372. PubMed ID: 29465235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An MOF-like Interpenetrated 2D Plus 2D to 3D Inorganic Grid Assembled by Linear Inorganic Pillars, Structures, and Properties in Supercapacitance.
    Xu NN; Qian LW; Li ZQ; Bian GQ; Zhu QY; Dai J
    Inorg Chem; 2018 Aug; 57(15):9153-9159. PubMed ID: 29987926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Hierarchical Quaternary Architectures of Metal-Organic Frameworks through Programmed Transformation.
    Han J; Shao L; Chen H; Zhou H; Zhang B; Zhang Y; Yuan H; Chen J; Zhou J; Fu Y
    Inorg Chem; 2022 May; 61(18):7173-7179. PubMed ID: 35482021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: tuning catalytic activity by controlling framework catenation and varying open channel sizes.
    Song F; Wang C; Falkowski JM; Ma L; Lin W
    J Am Chem Soc; 2010 Nov; 132(43):15390-8. PubMed ID: 20936862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.