These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28045906)

  • 1. Classification of Animal Movement Behavior through Residence in Space and Time.
    Torres LG; Orben RA; Tolkova I; Thompson DR
    PLoS One; 2017; 12(1):e0168513. PubMed ID: 28045906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using dynamic Brownian bridge movement modelling to measure temporal patterns of habitat selection.
    Byrne ME; Clint McCoy J; Hinton JW; Chamberlain MJ; Collier BA
    J Anim Ecol; 2014 Sep; 83(5):1234-43. PubMed ID: 24460723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D tracking of animals in the field using rotational stereo videography.
    de Margerie E; Simonneau M; Caudal JP; Houdelier C; Lumineau S
    J Exp Biol; 2015 Aug; 218(Pt 16):2496-504. PubMed ID: 26056245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Movement is the glue connecting home ranges and habitat selection.
    Van Moorter B; Rolandsen CM; Basille M; Gaillard JM
    J Anim Ecol; 2016 Jan; 85(1):21-31. PubMed ID: 25980987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy landscapes shape animal movement ecology.
    Shepard EL; Wilson RP; Rees WG; Grundy E; Lambertucci SA; Vosper SB
    Am Nat; 2013 Sep; 182(3):298-312. PubMed ID: 23933722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From fine-scale foraging to home ranges: a semivariance approach to identifying movement modes across spatiotemporal scales.
    Fleming CH; Calabrese JM; Mueller T; Olson KA; Leimgruber P; Fagan WF
    Am Nat; 2014 May; 183(5):E154-67. PubMed ID: 24739204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BEEtag: A Low-Cost, Image-Based Tracking System for the Study of Animal Behavior and Locomotion.
    Crall JD; Gravish N; Mountcastle AM; Combes SA
    PLoS One; 2015; 10(9):e0136487. PubMed ID: 26332211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deriving Animal Behaviour from High-Frequency GPS: Tracking Cows in Open and Forested Habitat.
    de Weerd N; van Langevelde F; van Oeveren H; Nolet BA; Kölzsch A; Prins HH; de Boer WF
    PLoS One; 2015; 10(6):e0129030. PubMed ID: 26107643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioral states help translate dispersal movements into spatial distribution patterns of floaters.
    del Mar Delgado M; Penteriani V
    Am Nat; 2008 Oct; 172(4):475-85. PubMed ID: 18729727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fitting probability distributions to animal movement trajectories: using artificial neural networks to link distance, resources, and memory.
    Dalziel BD; Morales JM; Fryxell JM
    Am Nat; 2008 Aug; 172(2):248-58. PubMed ID: 18598199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Senescence effects in an extremely long-lived bird: the grey-headed albatross Thalassarche chrysostoma.
    Catry P; Phillips RA; Phalan B; Croxall JP
    Proc Biol Sci; 2006 Jul; 273(1594):1625-30. PubMed ID: 16769633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving on with foraging theory: incorporating movement decisions into the functional response of a gregarious shorebird.
    van Gils JA; van der Geest M; De Meulenaer B; Gillis H; Piersma T; Folmer EO
    J Anim Ecol; 2015 Mar; 84(2):554-64. PubMed ID: 25283546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hidden Markov models identify major movement modes in accelerometer and magnetometer data from four albatross species.
    Conners MG; Michelot T; Heywood EI; Orben RA; Phillips RA; Vyssotski AL; Shaffer SA; Thorne LH
    Mov Ecol; 2021 Feb; 9(1):7. PubMed ID: 33618773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous diffusion on the servosphere: A potential tool for detecting inherent organismal movement patterns.
    Nagaya N; Mizumoto N; Abe MS; Dobata S; Sato R; Fujisawa R
    PLoS One; 2017; 12(6):e0177480. PubMed ID: 28570562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unpredictability of escape trajectory explains predator evasion ability and microhabitat preference of desert rodents.
    Moore TY; Cooper KL; Biewener AA; Vasudevan R
    Nat Commun; 2017 Sep; 8(1):440. PubMed ID: 28874728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of bottlenose dolphin movement patterns and their relationship with foraging.
    Bailey H; Thompson P
    J Anim Ecol; 2006 Mar; 75(2):456-65. PubMed ID: 16637998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State-space models of individual animal movement.
    Patterson TA; Thomas L; Wilcox C; Ovaskainen O; Matthiopoulos J
    Trends Ecol Evol; 2008 Feb; 23(2):87-94. PubMed ID: 18191283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying drivers of wild pig movement across multiple spatial and temporal scales.
    Kay SL; Fischer JW; Monaghan AJ; Beasley JC; Boughton R; Campbell TA; Cooper SM; Ditchkoff SS; Hartley SB; Kilgo JC; Wisely SM; Wyckoff AC; VerCauteren KC; Pepin KM
    Mov Ecol; 2017; 5():14. PubMed ID: 28630712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new multi-scale measure for analysing animal movement data.
    Postlethwaite CM; Brown P; Dennis TE
    J Theor Biol; 2013 Jan; 317():175-85. PubMed ID: 23079283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.