BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28045946)

  • 1. Critical Size Bone Defect Healing Using Collagen-Calcium Phosphate Bone Graft Materials.
    Walsh WR; Oliver RA; Christou C; Lovric V; Walsh ER; Prado GR; Haider T
    PLoS One; 2017; 12(1):e0168883. PubMed ID: 28045946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal response of an injectable calcium phosphate material in a critical size defect.
    Landeck JT; Walsh WR; Oliver RA; Wang T; Gordon MR; Ahn E; White CD
    J Orthop Surg Res; 2021 Aug; 16(1):496. PubMed ID: 34389027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel microhydroxyapatite particles in a collagen scaffold: a bioactive bone void filler?
    Lyons FG; Gleeson JP; Partap S; Coghlan K; O'Brien FJ
    Clin Orthop Relat Res; 2014 Apr; 472(4):1318-28. PubMed ID: 24385037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete subchondral bone defect regeneration with a tricalcium phosphate collagen implant and osteoinductive growth factors: a randomized controlled study in Göttingen minipigs.
    Gotterbarm T; Breusch SJ; Jung M; Streich N; Wiltfang J; Berardi Vilei S; Richter W; Nitsche T
    J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):933-42. PubMed ID: 24259283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of collagen/β-tricalcium phosphate bone graft to regenerate bone in critically sized rabbit calvarial defects.
    Tebyanian H; Norahan MH; Eyni H; Movahedin M; Mortazavi SJ; Karami A; Nourani MR; Baheiraei N
    J Appl Biomater Funct Mater; 2019; 17(1):2280800018820490. PubMed ID: 30832532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of tricalcium phosphate/collagen (TCP/collagene)nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits.
    Mohseni M; Jahandideh A; Abedi G; Akbarzadeh A; Hesaraki S
    Artif Cells Nanomed Biotechnol; 2018 Mar; 46(2):242-249. PubMed ID: 28503937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone graft substitutes and bone morphogenetic proteins for osteoporotic fractures: what is the evidence?
    Van Lieshout EM; Alt V
    Injury; 2016 Jan; 47 Suppl 1():S43-6. PubMed ID: 26768291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of bone-graft substitutes in large bone defects: any specific needs?
    Calori GM; Mazza E; Colombo M; Ripamonti C
    Injury; 2011 Sep; 42 Suppl 2():S56-63. PubMed ID: 21752369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological response to β-tricalcium phosphate/calcium sulfate synthetic graft material: an experimental study.
    Leventis MD; Fairbairn P; Dontas I; Faratzis G; Valavanis KD; Khaldi L; Kostakis G; Eleftheriadis E
    Implant Dent; 2014 Feb; 23(1):37-43. PubMed ID: 24384743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collagen/Beta-Tricalcium Phosphate Based Synthetic Bone Grafts via Dehydrothermal Processing.
    Sarikaya B; Aydin HM
    Biomed Res Int; 2015; 2015():576532. PubMed ID: 26504812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved bone regeneration using collagen-coated biphasic calcium phosphate with high porosity in a rabbit calvarial model.
    Seo SJ; Kim YG
    Biomed Mater; 2020 Dec; 16(1):015012. PubMed ID: 33325377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Study on the Application of Mesenchymal Stromal Cells Combined with Tricalcium Phosphate Scaffold into Femoral Bone Defects.
    Šponer P; Kučera T; Brtková J; Urban K; Kočí Z; Měřička P; Bezrouk A; Konrádová Š; Filipová A; Filip S
    Cell Transplant; 2018 Oct; 27(10):1459-1468. PubMed ID: 30203687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convergence of scaffold-guided bone regeneration and RIA bone grafting for the treatment of a critical-sized bone defect of the femoral shaft.
    Kobbe P; Laubach M; Hutmacher DW; Alabdulrahman H; Sellei RM; Hildebrand F
    Eur J Med Res; 2020 Dec; 25(1):70. PubMed ID: 33349266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of a tunnel-structured β-tricalcium phosphate graft material on periodontal regeneration: a pilot study in a canine one-wall intrabony defect model.
    Matsuura T; Akizuki T; Hoshi S; Ikawa T; Kinoshita A; Sunaga M; Oda S; Kuboki Y; Izumi Y
    J Periodontal Res; 2015 Jun; 50(3):347-55. PubMed ID: 25040655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MagnetOs, Vitoss, and Novabone in a Multi-endpoint Study of Posterolateral Fusion: A True Fusion or Not?
    van Dijk LA; Barrère-de Groot F; Rosenberg AJWP; Pelletier M; Christou C; de Bruijn JD; Walsh WR
    Clin Spine Surg; 2020 Jul; 33(6):E276-E287. PubMed ID: 31977334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel osteoconductive β-tricalcium phosphate/poly(L-lactide-co-e-caprolactone) scaffold for bone regeneration: a study in a rabbit calvarial defect.
    Pihlman H; Keränen P; Paakinaho K; Linden J; Hannula M; Manninen IK; Hyttinen J; Manninen M; Laitinen-Vapaavuori O
    J Mater Sci Mater Med; 2018 Oct; 29(10):156. PubMed ID: 30298429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of bone morphogenetic protein and proportion of hydroxyapatite on new bone formation in biphasic calcium phosphate graft: two pilot studies in animal bony defect model.
    Yun PY; Kim YK; Jeong KI; Park JC; Choi YJ
    J Craniomaxillofac Surg; 2014 Dec; 42(8):1909-17. PubMed ID: 25443868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a bioactive porous collagen/β-tricalcium phosphate bone graft assisting rapid vascularization for bone tissue engineering applications.
    Baheiraei N; Nourani MR; Mortazavi SMJ; Movahedin M; Eyni H; Bagheri F; Norahan MH
    J Biomed Mater Res A; 2018 Jan; 106(1):73-85. PubMed ID: 28879686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of 3D printed PCL/PLGA/β-TCP versus collagen membranes for guided bone regeneration in a beagle implant model.
    Won JY; Park CY; Bae JH; Ahn G; Kim C; Lim DH; Cho DW; Yun WS; Shim JH; Huh JB
    Biomed Mater; 2016 Oct; 11(5):055013. PubMed ID: 27716630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.