BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 28046055)

  • 1. Role of Interleukin-17A on the Chemotactic Responses to CCL7 in a Murine Allergic Rhinitis Model.
    Zhang YL; Han DH; Kim DY; Lee CH; Rhee CS
    PLoS One; 2017; 12(1):e0169353. PubMed ID: 28046055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of interleukin 17A to the development and regulation of allergic inflammation in a murine allergic rhinitis model.
    Quan SH; Zhang YL; Han DH; Iwakura Y; Rhee CS
    Ann Allergy Asthma Immunol; 2012 May; 108(5):342-50. PubMed ID: 22541406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CCR3 gene knockout in bone marrow cells ameliorates combined allergic rhinitis and asthma syndrome (CARAS) by reducing airway inflammatory cell infiltration and Th2 cytokines expression in mice model.
    Dai M; Zhu X; Yu J; Yuan J; Zhu Y; Bao Y; Yong X
    Int Immunopharmacol; 2022 Mar; 104():108509. PubMed ID: 34998035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of lentivirus-mediated CCR3 RNA interference on the function of mast cells of allergic rhinitis in mice.
    Wu S; Tang S; Peng H; Jiang Y; Liu Y; Wu Z; Liu Q; Zhu X
    Int Immunopharmacol; 2020 Jan; 78():106011. PubMed ID: 31776094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of RNA interference therapy on the mice eosinophils CCR3 gene and granule protein in the murine model of allergic rhinitis.
    Zhu XH; Liao B; Liu K; Liu YH
    Asian Pac J Trop Med; 2014 Mar; 7(3):226-30. PubMed ID: 24507645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interleukin-17A-induced inflammation does not influence the development of nasal polyps in murine model.
    Hong SL; Zhang YL; Kim SW; Kim DW; Cho SH; Chang YS; Lee CH; Rhee CS
    Int Forum Allergy Rhinol; 2015 May; 5(5):363-70. PubMed ID: 25754984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of hypoxia-inducible factor 1α in allergic rhinitis.
    Mo JH; Kim JH; Lim DJ; Kim EH
    Am J Rhinol Allergy; 2014; 28(2):e100-6. PubMed ID: 24717944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intralymphatic treatment of flagellin-ovalbumin mixture reduced allergic inflammation in murine model of allergic rhinitis.
    Kim EH; Kim JH; Samivel R; Bae JS; Chung YJ; Chung PS; Lee SE; Mo JH
    Allergy; 2016 May; 71(5):629-39. PubMed ID: 26752101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antiallergic effect of gami-hyunggyeyeongyotang on ovalbumin-induced allergic rhinitis in mouse and human mast cells.
    Im YS; Lee B; Kim EY; Min JH; Song DU; Lim JM; Eom JW; Cho HJ; Sohn Y; Jung HS
    J Chin Med Assoc; 2016 Apr; 79(4):185-94. PubMed ID: 26852212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C‑C chemokine receptor type 3 gene knockout alleviates inflammatory responses in allergic rhinitis model mice by regulating the expression of eosinophil granule proteins and immune factors.
    Zhu X; Liu K; Wang J; Peng H; Pan Q; Wu S; Jiang Y; Liu Y
    Mol Med Rep; 2018 Oct; 18(4):3780-3790. PubMed ID: 30106146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of resiquimod in an ovalbumin-induced allergic rhinitis model.
    Qu S; Qin T; Li M; Zhang S; Ye L; Wei J; Fan H; Chen B
    Int Immunopharmacol; 2018 Jun; 59():233-242. PubMed ID: 29665497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alleviation of murine allergic rhinitis by C19, a C-terminal peptide of chemokine-like factor 1 (CKLF1).
    Zheng Y; Guo C; Zhang Y; Qi H; Sun Q; Xu E; Zhang Y; Ma D; Wang Y
    Int Immunopharmacol; 2011 Dec; 11(12):2188-93. PubMed ID: 22001899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IL-16 variability and modulation by antiallergic drugs in a murine experimental allergic rhinitis model.
    Akiyama K; Karaki M; Kobayshi R; Dobashi H; Ishida T; Mori N
    Int Arch Allergy Immunol; 2009; 149(4):315-22. PubMed ID: 19295235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DMBT1 has a protective effect on allergic rhinitis.
    Zhao Y; Tao Q; Wu J; Liu H
    Biomed Pharmacother; 2020 Jan; 121():109675. PubMed ID: 31810134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of montelukast on tissue inflammatory and bone marrow responses in murine experimental allergic rhinitis: interaction with interleukin-5 deficiency.
    Roa J; Morikawa H; Crawford L; Baatjes A; Duong M; Denburg JA
    Immunology; 2007 Nov; 122(3):438-44. PubMed ID: 17627772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saikosaponin A ameliorates nasal inflammation by suppressing IL-6/ROR-γt/STAT3/IL-17/NF-κB pathway in OVA-induced allergic rhinitis.
    Piao CH; Song CH; Lee EJ; Chai OH
    Chem Biol Interact; 2020 Jan; 315():108874. PubMed ID: 31669322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogenesis of murine experimental allergic rhinitis: a study of local and systemic consequences of IL-5 deficiency.
    Saito H; Matsumoto K; Denburg AE; Crawford L; Ellis R; Inman MD; Sehmi R; Takatsu K; Matthaei KI; Denburg JA
    J Immunol; 2002 Mar; 168(6):3017-23. PubMed ID: 11884474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simvastatin Inhibits IL-5-Induced Chemotaxis and CCR3 Expression of HL-60-Derived and Human Primary Eosinophils.
    Fu CH; Tsai WC; Lee TJ; Huang CC; Chang PH; Su Pang JH
    PLoS One; 2016; 11(6):e0157186. PubMed ID: 27275740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CCR3 gene knockout inhibits proliferation, differentiation, and migration of eosinophils in allergic rhinitis model mice.
    Zhang Y; Wang M; Liu Z; Zhu X; Huang Q; Wang J; Liu Y
    Mol Immunol; 2023 Oct; 162():1-10. PubMed ID: 37611377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intranasal application of Epstein-Barr virus/lipoplex to abrogate eosinophillia in murine model of allergic rhinitis.
    Han DM; Zhou B; Wang T; Wang XD; Fan EZ
    Chin Med J (Engl); 2006 Jun; 119(12):991-7. PubMed ID: 16805982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.