These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 28046065)
1. Infective Juveniles of the Entomopathogenic Nematode Steinernema scapterisci Are Preferentially Activated by Cricket Tissue. Lu D; Sepulveda C; Dillman AR PLoS One; 2017; 12(1):e0169410. PubMed ID: 28046065 [TBL] [Abstract][Full Text] [Related]
2. Specialization of the entomopathogenic nematode Steinernema scapterisci with its mutualistic Xenorhabdus symbiont. Sicard M; Ramone H; Le Brun N; Pagès S; Moulia C Naturwissenschaften; 2005 Oct; 92(10):472-6. PubMed ID: 16163505 [TBL] [Abstract][Full Text] [Related]
3. Sand crickets (Gryllus firmus) have low susceptibility to entomopathogenic nematodes and their pathogenic bacteria. Aryal SK; Lu D; Le K; Allison L; Gerke C; Dillman AR J Invertebr Pathol; 2019 Jan; 160():54-60. PubMed ID: 30528638 [TBL] [Abstract][Full Text] [Related]
4. Influence of nematode age and culture conditions on morphological and physiological parameters in the bacterial vesicle of Steinernema carpocapsae (Nematoda: Steinernematidae). Flores-Lara Y; Renneckar D; Forst S; Goodrich-Blair H; Stock P J Invertebr Pathol; 2007 Jun; 95(2):110-8. PubMed ID: 17376477 [TBL] [Abstract][Full Text] [Related]
5. A survival-reproduction trade-off in entomopathogenic nematodes mediated by their bacterial symbionts. Emelianoff V; Chapuis E; Le Brun N; Chiral M; Moulia C; Ferdy JB Evolution; 2008 Apr; 62(4):932-42. PubMed ID: 18194474 [TBL] [Abstract][Full Text] [Related]
6. Effect of bacterial symbionts Xenorhabdus on mortality of infective juveniles of two Steinernema species. Emelianoff V; Sicard M; Le Brun N; Moulia C; Ferdy JB Parasitol Res; 2007 Feb; 100(3):657-9. PubMed ID: 16944202 [TBL] [Abstract][Full Text] [Related]
7. Gnotobiological study of infective juveniles and symbionts of Steinernema scapterisci: A model to clarify the concept of the natural occurrence of monoxenic associations in entomopathogenic nematodes. Bonifassi E; Fischer-Le Saux M; Boemare N; Lanois A; Laumond C; Smart G J Invertebr Pathol; 1999 Sep; 74(2):164-72. PubMed ID: 10486229 [TBL] [Abstract][Full Text] [Related]
8. Interspecific competition between entomopathogenic nematodes (Steinernema) is modified by their bacterial symbionts (Xenorhabdus). Sicard M; Hinsinger J; Le Brun N; Pages S; Boemare N; Moulia C BMC Evol Biol; 2006 Sep; 6():68. PubMed ID: 16953880 [TBL] [Abstract][Full Text] [Related]
9. Integration of insect parasitic nematodes (Rhabditida steinernematidae) with insecticides for control of pest mole crickets (Orthoptera: Gryllotalpidae: Scapteriscus spp.). Barbara KA; Buss EA J Econ Entomol; 2005 Jun; 98(3):689-93. PubMed ID: 16022294 [TBL] [Abstract][Full Text] [Related]
11. Entomopathogenic nematode-associated microbiota: from monoxenic paradigm to pathobiome. Ogier JC; Pagès S; Frayssinet M; Gaudriault S Microbiome; 2020 Feb; 8(1):25. PubMed ID: 32093774 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of specificity of association between the nematode Steinernema scapterisci and its symbiotic bacterium. Grewal PS; Matsuura M; Converse V Parasitology; 1997 May; 114 ( Pt 5)():483-8. PubMed ID: 9149419 [TBL] [Abstract][Full Text] [Related]
13. When mutualists are pathogens: an experimental study of the symbioses between Steinernema (entomopathogenic nematodes) and Xenorhabdus (bacteria). Sicard M; Ferdy JB; Pagès S; Le Brun N; Godelle B; Boemare N; Moulia C J Evol Biol; 2004 Sep; 17(5):985-93. PubMed ID: 15312071 [TBL] [Abstract][Full Text] [Related]
14. Temperature effects on Korean entomopathogenic nematodes, Steinernema glaseri and S. longicaudum, and their symbiotic bacteria. Hang TD; Choo HY; Lee DW; Lee SM; Kaya HK; Park CG J Microbiol Biotechnol; 2007 Mar; 17(3):420-7. PubMed ID: 18050945 [TBL] [Abstract][Full Text] [Related]
15. Behavioral and molecular response of the insect parasitic nematode Steinernema carpocapsae to cues emitted by a host, the red palm weevil, Rhynchophorus ferrugineus. Santhi VS; Ment D; Faigenboim A; Salame L; Soroker V; Hetzroni A; Glazer I Mol Biochem Parasitol; 2021 Jan; 241():111345. PubMed ID: 33290763 [TBL] [Abstract][Full Text] [Related]
16. EVALUATION OF VIRULENCE OF STEINERNEMA CARPOCAPSAE TO EUROPEAN MOLE CRICKET GRYLLOTALPA GRYLOTALPA L. Stefanovska T; Pisdlisnyuk V Commun Agric Appl Biol Sci; 2014; 79(2):331-4. PubMed ID: 26084111 [TBL] [Abstract][Full Text] [Related]
17. Effect of insect cadaver desiccation and soil water potential during rehydration on entomopathogenic nematode (Rhabditida: Steinernematidae and Heterorhabditidae) production and virulence. Spence KO; Stevens GN; Arimoto H; Ruiz-Vega J; Kaya HK; Lewis EE J Invertebr Pathol; 2011 Feb; 106(2):268-73. PubMed ID: 21047513 [TBL] [Abstract][Full Text] [Related]
18. Bacterial community profile after the lethal infection of Steinernema-Xenorhabdus pairs into soil-reared Tenebrio molitor larvae. Cambon MC; Lafont P; Frayssinet M; Lanois A; Ogier JC; Pagès S; Parthuisot N; Ferdy JB; Gaudriault S FEMS Microbiol Ecol; 2020 Feb; 96(2):. PubMed ID: 31942980 [TBL] [Abstract][Full Text] [Related]
19. Tolerance of the mealworm beetle, Tenebrio molitor, to an entomopathogenic nematode, Steinernema feltiae, at two infection foci, the intestine and the hemocoel. Roy MC; Kim Y J Invertebr Pathol; 2020 Jul; 174():107428. PubMed ID: 32553640 [TBL] [Abstract][Full Text] [Related]
20. Influence of cell density and phase variants of bacterial symbionts (Xenorhabdus spp.) on dauer juvenile recovery and development of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Hirao A; Ehlers RU Appl Microbiol Biotechnol; 2009 Aug; 84(1):77-85. PubMed ID: 19319521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]