BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 28046103)

  • 1. Transcriptome Profiling Identifies Ribosome Biogenesis as a Target of Alcohol Teratogenicity and Vulnerability during Early Embryogenesis.
    Berres ME; Garic A; Flentke GR; Smith SM
    PLoS One; 2017; 12(1):e0169351. PubMed ID: 28046103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput transcriptome sequencing identifies candidate genetic modifiers of vulnerability to fetal alcohol spectrum disorders.
    Garic A; Berres ME; Smith SM
    Alcohol Clin Exp Res; 2014 Jul; 38(7):1874-82. PubMed ID: 24962712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alcohol exposure suppresses ribosome biogenesis and causes nucleolar stress in cranial neural crest cells.
    Flentke GR; Wilkie TE; Baulch J; Huang Y; Smith SM
    PLoS One; 2024; 19(6):e0304557. PubMed ID: 38941348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tgfbeta3 regulation of chondrogenesis and osteogenesis in zebrafish is mediated through formation and survival of a subpopulation of the cranial neural crest.
    Cheah FS; Winkler C; Jabs EW; Chong SS
    Mech Dev; 2010; 127(7-8):329-44. PubMed ID: 20406684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chick embryo as a model for the effects of prenatal exposure to alcohol on craniofacial development.
    Kiecker C
    Dev Biol; 2016 Jul; 415(2):314-325. PubMed ID: 26777098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders.
    Calo E; Gu B; Bowen ME; Aryan F; Zalc A; Liang J; Flynn RA; Swigut T; Chang HY; Attardi LD; Wysocka J
    Nature; 2018 Feb; 554(7690):112-117. PubMed ID: 29364875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pdgfra protects against ethanol-induced craniofacial defects in a zebrafish model of FASD.
    McCarthy N; Wetherill L; Lovely CB; Swartz ME; Foroud TM; Eberhart JK
    Development; 2013 Aug; 140(15):3254-65. PubMed ID: 23861062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome-Wide Regulation of Key Developmental Pathways in the Mouse Neural Tube by Prenatal Alcohol Exposure.
    Boschen KE; Ptacek TS; Simon JM; Parnell SE
    Alcohol Clin Exp Res; 2020 Aug; 44(8):1540-1550. PubMed ID: 32557641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosomal protein deficiency causes Tp53-independent erythropoiesis failure in zebrafish.
    Yadav GV; Chakraborty A; Uechi T; Kenmochi N
    Int J Biochem Cell Biol; 2014 Apr; 49():1-7. PubMed ID: 24417973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Roles of RNA Polymerase I and III Subunits Polr1c and Polr1d in Craniofacial Development and in Zebrafish Models of Treacher Collins Syndrome.
    Noack Watt KE; Achilleos A; Neben CL; Merrill AE; Trainor PA
    PLoS Genet; 2016 Jul; 12(7):e1006187. PubMed ID: 27448281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural crest development in fetal alcohol syndrome.
    Smith SM; Garic A; Flentke GR; Berres ME
    Birth Defects Res C Embryo Today; 2014 Sep; 102(3):210-20. PubMed ID: 25219761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The avian embryo as a model for fetal alcohol spectrum disorder.
    Flentke GR; Smith SM
    Biochem Cell Biol; 2018 Apr; 96(2):98-106. PubMed ID: 29024604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in neural crest sensitivity to ethanol account for the infrequency of anterior segment defects in the eye compared with craniofacial anomalies in a zebrafish model of fetal alcohol syndrome.
    Eason J; Williams AL; Chawla B; Apsey C; Bohnsack BL
    Birth Defects Res; 2017 Sep; 109(15):1212-1227. PubMed ID: 28681995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome analysis reveals a ribosome constituents disorder involved in the RPL5 downregulated zebrafish model of Diamond-Blackfan anemia.
    Wan Y; Zhang Q; Zhang Z; Song B; Wang X; Zhang Y; Jia Q; Cheng T; Zhu X; Leung AY; Yuan W; Jia H; Fang X
    BMC Med Genomics; 2016 Mar; 9():13. PubMed ID: 26961822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alcohol exposure induces chick craniofacial bone defects by negatively affecting cranial neural crest development.
    Zhang P; Wang G; Lin Z; Wu Y; Zhang J; Liu M; Lee KKH; Chuai M; Yang X
    Toxicol Lett; 2017 Nov; 281():53-64. PubMed ID: 28919490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ribosome biogenesis protein Esf1 is essential for pharyngeal cartilage formation in zebrafish.
    Chen JY; Tan X; Wang ZH; Liu YZ; Zhou JF; Rong XZ; Lu L; Li Y
    FEBS J; 2018 Sep; 285(18):3464-3484. PubMed ID: 30073783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exon level machine learning analyses elucidate novel candidate miRNA targets in an avian model of fetal alcohol spectrum disorder.
    Al-Shaer AE; Flentke GR; Berres ME; Garic A; Smith SM
    PLoS Comput Biol; 2019 Apr; 15(4):e1006937. PubMed ID: 30973878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic factors that shape craniofacial outcome and neural crest vulnerability in FASD.
    Smith SM; Garic A; Berres ME; Flentke GR
    Front Genet; 2014; 5():224. PubMed ID: 25147554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thyroid hormone and retinoic acid interact to regulate zebrafish craniofacial neural crest development.
    Bohnsack BL; Kahana A
    Dev Biol; 2013 Jan; 373(2):300-9. PubMed ID: 23165295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathogenesis of POLR1C-dependent Type 3 Treacher Collins Syndrome revealed by a zebrafish model.
    Lau MC; Kwong EM; Lai KP; Li JW; Ho JC; Chan TF; Wong CK; Jiang YJ; Tse WK
    Biochim Biophys Acta; 2016 Jun; 1862(6):1147-58. PubMed ID: 26972049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.