These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28046127)

  • 1. Structure-Function Network Mapping and Its Assessment via Persistent Homology.
    Liang H; Wang H
    PLoS Comput Biol; 2017 Jan; 13(1):e1005325. PubMed ID: 28046127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Mapping Between Structural and Functional Brain Networks.
    Meier J; Tewarie P; Hillebrand A; Douw L; van Dijk BW; Stufflebeam SM; Van Mieghem P
    Brain Connect; 2016 May; 6(4):298-311. PubMed ID: 26860437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relation between structural and functional connectivity patterns in complex brain networks.
    Stam CJ; van Straaten EC; Van Dellen E; Tewarie P; Gong G; Hillebrand A; Meier J; Van Mieghem P
    Int J Psychophysiol; 2016 May; 103():149-60. PubMed ID: 25678023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Track-weighted functional connectivity (TW-FC): a tool for characterizing the structural-functional connections in the brain.
    Calamante F; Masterton RA; Tournier JD; Smith RE; Willats L; Raffelt D; Connelly A
    Neuroimage; 2013 Apr; 70():199-210. PubMed ID: 23298749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Topological Criterion for Filtering Information in Complex Brain Networks.
    De Vico Fallani F; Latora V; Chavez M
    PLoS Comput Biol; 2017 Jan; 13(1):e1005305. PubMed ID: 28076353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in structural and functional connectivity among resting-state networks across the human lifespan.
    Betzel RF; Byrge L; He Y; Goñi J; Zuo XN; Sporns O
    Neuroimage; 2014 Nov; 102 Pt 2():345-57. PubMed ID: 25109530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Reliability of Individual Brain Activity Networks.
    Cassidy B; Bowman FD; Rae C; Solo V
    IEEE Trans Med Imaging; 2018 Feb; 37(2):649-662. PubMed ID: 29408792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network centrality in the human functional connectome.
    Zuo XN; Ehmke R; Mennes M; Imperati D; Castellanos FX; Sporns O; Milham MP
    Cereb Cortex; 2012 Aug; 22(8):1862-75. PubMed ID: 21968567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The (in)stability of functional brain network measures across thresholds.
    Garrison KA; Scheinost D; Finn ES; Shen X; Constable RT
    Neuroimage; 2015 Sep; 118():651-61. PubMed ID: 26021218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Track-weighted dynamic functional connectivity (TW-dFC): a new method to study time-resolved functional connectivity.
    Calamante F; Smith RE; Liang X; Zalesky A; Connelly A
    Brain Struct Funct; 2017 Nov; 222(8):3761-3774. PubMed ID: 28447220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring mechanisms of spontaneous functional connectivity in MEG: how delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations.
    Cabral J; Luckhoo H; Woolrich M; Joensson M; Mohseni H; Baker A; Kringelbach ML; Deco G
    Neuroimage; 2014 Apr; 90():423-35. PubMed ID: 24321555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different alterations in brain functional networks according to direct and indirect topological connections in patients with schizophrenia.
    Park CH; Lee S; Kim T; Won WY; Lee KU
    Schizophr Res; 2017 Oct; 188():82-88. PubMed ID: 28109669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical parametric network analysis of functional connectivity dynamics during a working memory task.
    Ginestet CE; Simmons A
    Neuroimage; 2011 Mar; 55(2):688-704. PubMed ID: 21095229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy.
    Wirsich J; Perry A; Ridley B; Proix T; Golos M; Bénar C; Ranjeva JP; Bartolomei F; Breakspear M; Jirsa V; Guye M
    Neuroimage Clin; 2016; 11():707-718. PubMed ID: 27330970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity.
    Wirsich J; Ridley B; Besson P; Jirsa V; Bénar C; Ranjeva JP; Guye M
    Neuroimage; 2017 Nov; 161():251-260. PubMed ID: 28842386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.
    Carbonell F; Bellec P; Shmuel A
    Neuroimage; 2014 Feb; 86():343-53. PubMed ID: 24128734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain.
    van den Heuvel MP; Stam CJ; Boersma M; Hulshoff Pol HE
    Neuroimage; 2008 Nov; 43(3):528-39. PubMed ID: 18786642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency.
    Chen Y; Wang S; Hilgetag CC; Zhou C
    PLoS Comput Biol; 2017 Sep; 13(9):e1005776. PubMed ID: 28961235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks.
    Betzel RF; Fukushima M; He Y; Zuo XN; Sporns O
    Neuroimage; 2016 Feb; 127():287-297. PubMed ID: 26687667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.