These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 28046178)
1. Using single-step genomic best linear unbiased predictor to enhance the mitigation of seasonal losses due to heat stress in pigs. Fragomeni BO; Lourenco DA; Tsuruta S; Bradford HL; Gray KA; Huang Y; Misztal I J Anim Sci; 2016 Dec; 94(12):5004-5013. PubMed ID: 28046178 [TBL] [Abstract][Full Text] [Related]
2. Modeling response to heat stress in pigs from nucleus and commercial farms in different locations in the United States. Fragomeni BO; Lourenco DA; Tsuruta S; Andonov S; Gray K; Huang Y; Misztal I J Anim Sci; 2016 Nov; 94(11):4789-4798. PubMed ID: 27898949 [TBL] [Abstract][Full Text] [Related]
3. Development of genomic predictions for Angus cattle in Brazil incorporating genotypes from related American sires. Campos GS; Cardoso FF; Gomes CCG; Domingues R; de Almeida Regitano LC; de Sena Oliveira MC; de Oliveira HN; Carvalheiro R; Albuquerque LG; Miller S; Misztal I; Lourenco D J Anim Sci; 2022 Feb; 100(2):. PubMed ID: 35031806 [TBL] [Abstract][Full Text] [Related]
4. Prediction accuracies and genetic parameters for test-day traits from genomic and pedigree-based random regression models with or without heat stress interactions. Bohlouli M; Alijani S; Naderi S; Yin T; König S J Dairy Sci; 2019 Jan; 102(1):488-502. PubMed ID: 30343923 [TBL] [Abstract][Full Text] [Related]
5. Single-Step GBLUP and GWAS Analyses Suggests Implementation of Unweighted Two Trait Approach for Heat Stress in Swine. Dodd GR; Gray K; Huang Y; Fragomeni B Animals (Basel); 2022 Feb; 12(3):. PubMed ID: 35158711 [TBL] [Abstract][Full Text] [Related]
6. Genomic prediction ability for beef fatty acid profile in Nelore cattle using different pseudo-phenotypes. Chiaia HLJ; Peripolli E; de Oliveira Silva RM; Feitosa FLB; de Lemos MVA; Berton MP; Olivieri BF; Espigolan R; Tonussi RL; Gordo DGM; de Albuquerque LG; de Oliveira HN; Ferrinho AM; Mueller LF; Kluska S; Tonhati H; Pereira ASC; Aguilar I; Baldi F J Appl Genet; 2018 Nov; 59(4):493-501. PubMed ID: 30251238 [TBL] [Abstract][Full Text] [Related]
7. Empirical comparison between different methods for genomic prediction of number of piglets born alive in moderate sized breeding populations. Fangmann A; Sharifi RA; Heinkel J; Danowski K; Schrade H; Erbe M; Simianer H J Anim Sci; 2017 Apr; 95(4):1434-1443. PubMed ID: 28464085 [TBL] [Abstract][Full Text] [Related]
8. Accuracy of genomic prediction using deregressed breeding values estimated from purebred and crossbred offspring phenotypes in pigs. Hidalgo AM; Bastiaansen JW; Lopes MS; Veroneze R; Groenen MA; de Koning DJ J Anim Sci; 2015 Jul; 93(7):3313-21. PubMed ID: 26440000 [TBL] [Abstract][Full Text] [Related]
9. Comparison of genomic predictions for lowly heritable traits using multi-step and single-step genomic best linear unbiased predictor in Holstein cattle. Guarini AR; Lourenco DAL; Brito LF; Sargolzaei M; Baes CF; Miglior F; Misztal I; Schenkel FS J Dairy Sci; 2018 Sep; 101(9):8076-8086. PubMed ID: 29935829 [TBL] [Abstract][Full Text] [Related]
10. Technical note: Impact of pedigree depth on convergence of single-step genomic BLUP in a purebred swine population. Pocrnic I; Lourenco DAL; Bradford HL; Chen CY; Misztal I J Anim Sci; 2017 Aug; 95(8):3391-3395. PubMed ID: 28805917 [TBL] [Abstract][Full Text] [Related]
11. Comparing algorithms to approximate accuracies for single-step genomic best linear unbiased predictor. Ramos P; Garcia A; Retallik K; Bermann M; Tsuruta S; Misztal I; Veroneze R; Lourenco D J Anim Sci; 2024 Jan; 102():. PubMed ID: 39011991 [TBL] [Abstract][Full Text] [Related]
12. Improving accuracy of direct and maternal genetic effects in genomic evaluations using pooled boar semen: a simulation study1. Maiorano AM; Assen A; Bijma P; Chen CY; Silva JAIV; Herring WO; Tsuruta S; Misztal I; Lourenco DAL J Anim Sci; 2019 Jul; 97(8):3237-3245. PubMed ID: 31240314 [TBL] [Abstract][Full Text] [Related]
13. Crossbreed evaluations in single-step genomic best linear unbiased predictor using adjusted realized relationship matrices. Lourenco DA; Tsuruta S; Fragomeni BO; Chen CY; Herring WO; Misztal I J Anim Sci; 2016 Mar; 94(3):909-19. PubMed ID: 27065253 [TBL] [Abstract][Full Text] [Related]
14. Sire evaluation for total number born in pigs using a genomic reaction norms approach. Silva FF; Mulder HA; Knol EF; Lopes MS; Guimarães SE; Lopes PS; Mathur PK; Viana JM; Bastiaansen JW J Anim Sci; 2014 Sep; 92(9):3825-34. PubMed ID: 24492557 [TBL] [Abstract][Full Text] [Related]
15. Use of genomic information to exploit genotype-by-environment interactions for body weight of broiler chicken in bio-secure and production environments. Chu TT; Bastiaansen JWM; Berg P; Romé H; Marois D; Henshall J; Jensen J Genet Sel Evol; 2019 Sep; 51(1):50. PubMed ID: 31533614 [TBL] [Abstract][Full Text] [Related]
16. Reaction norm for yearling weight in beef cattle using single-step genomic evaluation. Oliveira DP; Lourenco DAL; Tsuruta S; Misztal I; Santos DJA; de Araújo Neto FR; Aspilcueta-Borquis RR; Baldi F; Carvalheiro R; de Camargo GMF; Albuquerque LG; Tonhati H J Anim Sci; 2018 Feb; 96(1):27-34. PubMed ID: 29365164 [TBL] [Abstract][Full Text] [Related]
17. Prediction accuracy for a simulated maternally affected trait of beef cattle using different genomic evaluation models. Lourenco DA; Misztal I; Wang H; Aguilar I; Tsuruta S; Bertrand JK J Anim Sci; 2013 Sep; 91(9):4090-8. PubMed ID: 23893997 [TBL] [Abstract][Full Text] [Related]
18. Changes in genomic predictions when new information is added. Hidalgo J; Lourenco D; Tsuruta S; Masuda Y; Miller S; Bermann M; Garcia ALS; Misztal I J Anim Sci; 2021 Feb; 99(2):. PubMed ID: 33544869 [TBL] [Abstract][Full Text] [Related]
19. Genomic prediction of crossbred performance based on purebred Landrace and Yorkshire data using a dominance model. Esfandyari H; Bijma P; Henryon M; Christensen OF; Sørensen AC Genet Sel Evol; 2016 Jun; 48(1):40. PubMed ID: 27276993 [TBL] [Abstract][Full Text] [Related]
20. Genomic selection for tolerance to heat stress in Australian dairy cattle. Nguyen TTT; Bowman PJ; Haile-Mariam M; Pryce JE; Hayes BJ J Dairy Sci; 2016 Apr; 99(4):2849-2862. PubMed ID: 27037467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]