BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28049049)

  • 1. Bio-electrolytic sensor for rapid monitoring of volatile fatty acids in anaerobic digestion process.
    Jin X; Li X; Zhao N; Angelidaki I; Zhang Y
    Water Res; 2017 Mar; 111():74-80. PubMed ID: 28049049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innovative air-cathode bioelectrochemical sensor for monitoring of total volatile fatty acids during anaerobic digestion.
    Sun H; Xu M; Wu S; Dong R; Angelidaki I; Zhang Y
    Chemosphere; 2021 Jun; 273():129660. PubMed ID: 33497985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial Electrochemical Monitoring of Volatile Fatty Acids during Anaerobic Digestion.
    Jin X; Angelidaki I; Zhang Y
    Environ Sci Technol; 2016 Apr; 50(8):4422-9. PubMed ID: 27054267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of volatile fatty acids and ammonia recovery from unstable anaerobic digesters with a microbial electrolysis cell.
    Cerrillo M; Viñas M; Bonmatí A
    Bioresour Technol; 2016 Nov; 219():348-356. PubMed ID: 27501031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A modified two-point titration method for the determination of volatile fatty acids in anaerobic systems.
    Mu ZX; He CS; Jiang JK; Zhang J; Yang HY; Mu Y
    Chemosphere; 2018 Aug; 204():251-256. PubMed ID: 29660538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The capture technology matters: Composition of municipal wastewater solids drives complexity of microbial community structure and volatile fatty acid profile during anaerobic fermentation.
    Brison A; Rossi P; Gelb A; Derlon N
    Sci Total Environ; 2022 Apr; 815():152762. PubMed ID: 34990680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unravelling the active microbial community in a thermophilic anaerobic digester-microbial electrolysis cell coupled system under different conditions.
    Cerrillo M; Viñas M; Bonmatí A
    Water Res; 2017 Mar; 110():192-201. PubMed ID: 28006709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated electrochemical-biological process as an alternative mean for ammonia monitoring during anaerobic digestion of organic wastes.
    Zhao N; Li X; Jin X; Angelidaki I; Zhang Y
    Chemosphere; 2018 Mar; 195():735-741. PubMed ID: 29289019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective production of volatile fatty acids at different pH in an anaerobic membrane bioreactor.
    Khan MA; Ngo HH; Guo W; Chang SW; Nguyen DD; Varjani S; Liu Y; Deng L; Cheng C
    Bioresour Technol; 2019 Jul; 283():120-128. PubMed ID: 30901584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities.
    Kaur A; Kim JR; Michie I; Dinsdale RM; Guwy AJ; Premier GC;
    Biosens Bioelectron; 2013 Sep; 47():50-5. PubMed ID: 23545174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pH, substrate loading, oxygen, and methanogens inhibitors on volatile fatty acid (VFA) production from citrus waste by anaerobic digestion.
    Eryildiz B; Lukitawesa ; Taherzadeh MJ
    Bioresour Technol; 2020 Apr; 302():122800. PubMed ID: 31986336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term evaluation of methane production in a bio-electrochemical anaerobic digestion reactor according to the organic loading rate.
    Park JG; Lee B; Park HR; Jun HB
    Bioresour Technol; 2019 Feb; 273():478-486. PubMed ID: 30469138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali.
    Zhang Y; Angelidaki I
    Water Res; 2015 Sep; 81():188-95. PubMed ID: 26057718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volatile fatty acid production from saline cooked mussel processing wastewater at low pH.
    Fra-Vázquez A; Pedrouso A; Val Del Rio A; Mosquera-Corral A
    Sci Total Environ; 2020 Aug; 732():139337. PubMed ID: 32438163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and validation of a simplified titration method for monitoring volatile fatty acids in anaerobic digestion.
    Sun H; Guo J; Wu S; Liu F; Dong R
    Waste Manag; 2017 Sep; 67():43-50. PubMed ID: 28522166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Innovative operation of microbial fuel cell-based biosensor for selective monitoring of acetate during anaerobic digestion.
    Sun H; Zhang Y; Wu S; Dong R; Angelidaki I
    Sci Total Environ; 2019 Mar; 655():1439-1447. PubMed ID: 30577135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial electrochemical sensors for volatile fatty acid measurement in high strength wastewaters: A review.
    Hill A; Tait S; Baillie C; Virdis B; McCabe B
    Biosens Bioelectron; 2020 Oct; 165():112409. PubMed ID: 32729529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of volatile fatty acid from fruit waste by anaerobic digestion at high organic loading rates: Performance and microbial community characteristics.
    Li BY; Xia ZY; Gou M; Sun ZY; Huang YL; Jiao SB; Dai WY; Tang YQ
    Bioresour Technol; 2022 Feb; 346():126648. PubMed ID: 34974105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous recovery of bio-sulfur and bio-methane from sulfate-rich wastewater by a bioelectrocatalysis coupled two-phase anaerobic reactor.
    Yuan Y; Zhang L; Chen T; Huang Y; Qian X; He J; Li Z; Ding C; Wang A
    Bioresour Technol; 2022 Nov; 363():127883. PubMed ID: 36067888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.