These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28049054)

  • 1. Monodisperse raspberry-like multihollow polymer/Ag nanocomposite microspheres for rapid catalytic degradation of methylene blue.
    Tian Q; Yu X; Zhang L; Yu D
    J Colloid Interface Sci; 2017 Apr; 491():294-304. PubMed ID: 28049054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological control of multihollow polymer latex particles through a controlled phase separation in the seeded emulsion polymerization.
    Li B; Xu Y; Wang M; Ge X
    Langmuir; 2013 Dec; 29(48):14787-94. PubMed ID: 24215454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-hollow polymer microspheres with enclosed surfaces and compartmentalized voids prepared by seeded swelling polymerization method.
    Tian Q; Yu D; Zhu K; Hu G; Zhang L; Liu Y
    J Colloid Interface Sci; 2016 Jul; 473():44-51. PubMed ID: 27046772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile preparation of raspberry-like superhydrophobic polystyrene particles via seeded dispersion polymerization.
    Wang RK; Liu HR; Wang FW
    Langmuir; 2013 Sep; 29(36):11440-8. PubMed ID: 23944982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of multihollow polymer particles by seeded emulsion polymerization using seed particles with incorporated nonionic emulsifier.
    Kobayashi H; Miyanaga E; Okubo M
    Langmuir; 2007 Aug; 23(17):8703-8. PubMed ID: 17625900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of the formation of multihollow polymer spheres through sulfonated polystyrene particles.
    Yuan Q; Yang L; Wang M; Wang H; Ge X; Ge X
    Langmuir; 2009 Mar; 25(5):2729-35. PubMed ID: 19437753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of novel multihollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via water-in-oil-in-water double emulsions.
    Yang S; Liu H; Zhang Z
    Langmuir; 2008 Sep; 24(18):10395-401. PubMed ID: 18715023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel walnut-like multihollow polymer particles: synthesis and morphology control.
    Ge X; Wang M; Wang H; Yuan Q; Ge X; Liu H; Tang T
    Langmuir; 2010 Feb; 26(3):1635-41. PubMed ID: 19778051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visible light photo catalytic inactivation of bacteria and photo degradation of methylene blue with Ag/TiO2 nanocomposite prepared by a novel method.
    Tahir K; Ahmad A; Li B; Nazir S; Khan AU; Nasir T; Khan ZUH; Naz R; Raza M
    J Photochem Photobiol B; 2016 Sep; 162():189-198. PubMed ID: 27376463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of raspberry-like polypyrrole composites with applications in catalysis.
    Yao T; Wang C; Wu J; Lin Q; Lv H; Zhang K; Yu K; Yang B
    J Colloid Interface Sci; 2009 Oct; 338(2):573-7. PubMed ID: 19493537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Synthesis of Mono-Dispersed Polystyrene (PS)/Ag Composite Microspheres via Modified Chemical Reduction.
    Zhu W; Wu Y; Yan C; Wang C; Zhang M; Wu Z
    Materials (Basel); 2013 Dec; 6(12):5625-5638. PubMed ID: 28788413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of shape-tunable macroparticles by seeded polymerization of styrene using non-cross-linked starch-based seed.
    Pei X; Zhai K; Liang X; Deng Y; Xu K; Tan Y; Yao X; Wang P
    J Colloid Interface Sci; 2018 Feb; 512():600-608. PubMed ID: 29101901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropic Magnetic Polymeric Particles with a Controllable Structure via Seeded Emulsion Polymerization.
    Xu Q; Nie Y; Wu D; Li J; Zeng J; Wang ZF; Jiang Y
    Langmuir; 2024 Feb; ():. PubMed ID: 38343282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of raspberry-like polymer/silica nanocomposite microspheres via emulsifier-free polymerization in water/acetone media.
    Yuhong Z; Qichao Z; Xingwang S; Qingqiong T; Min C; Limin W
    J Colloid Interface Sci; 2009 Aug; 336(2):544-50. PubMed ID: 19450807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effect of PVP and PEG on the behavior of silver nanoparticle-polymer composites.
    Dhakal TR; Mishra SR; Glenn Z; Rai BK
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6389-96. PubMed ID: 22962754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regenerable urchin-like Fe
    Cui K; Yan B; Xie Y; Qian H; Wang X; Huang Q; He Y; Jin S; Zeng H
    J Hazard Mater; 2018 May; 350():66-75. PubMed ID: 29453121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of polystyrene/Ag core-shell microspheres--a bio-inspired poly(dopamine) approach.
    Wang W; Jiang Y; Wen S; Liu L; Zhang L
    J Colloid Interface Sci; 2012 Feb; 368(1):241-9. PubMed ID: 22104278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant and catalytic applications of silver nanoparticles using Dimocarpus longan seed extract as a reducing and stabilizing agent.
    Khan FU; Chen Y; Khan NU; Khan ZU; Khan AU; Ahmad A; Tahir K; Wang L; Khan MR; Wan P
    J Photochem Photobiol B; 2016 Nov; 164():344-351. PubMed ID: 27723492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly regenerable mussel-inspired Fe₃O₄@polydopamine-Ag core-shell microspheres as catalyst and adsorbent for methylene blue removal.
    Xie Y; Yan B; Xu H; Chen J; Liu Q; Deng Y; Zeng H
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8845-52. PubMed ID: 24787615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ decoration of plasmonic Ag nanocrystals on the surface of (BiO)2CO3 hierarchical microspheres for enhanced visible light photocatalysis.
    Dong F; Li Q; Zhou Y; Sun Y; Zhang H; Wu Z
    Dalton Trans; 2014 Jul; 43(25):9468-80. PubMed ID: 24824403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.