These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28049300)

  • 1. Theoretical study of actinide monocarbides (ThC, UC, PuC, and AmC).
    Pogány P; Kovács A; Visscher L; Konings RJ
    J Chem Phys; 2016 Dec; 145(24):244310. PubMed ID: 28049300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relativistic Multireference Quantum Chemical Study of the Electronic Structure of Actinide Trioxide Molecules.
    Kovács A
    J Phys Chem A; 2017 Mar; 121(12):2523-2530. PubMed ID: 28304163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and other molecular properties of actinide trichlorides AnCl3 (An = Th-Cm).
    Kovács A; Konings RJ; Varga Z; Szieberth D
    J Phys Chem A; 2013 Nov; 117(44):11357-63. PubMed ID: 24093335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of the structure and bonding in ThC2 and UC2.
    Pogány P; Kovács A; Varga Z; Bickelhaupt FM; Konings RJ
    J Phys Chem A; 2012 Jan; 116(1):747-55. PubMed ID: 22191481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and Electronic Structures of Homoleptic Six-Coordinate Cobalt(I) Complexes of 2,2':6',2″-Terpyridine, 2,2'-Bipyridine, and 1,10-Phenanthroline. An Experimental and Computational Study.
    England J; Bill E; Weyhermüller T; Neese F; Atanasov M; Wieghardt K
    Inorg Chem; 2015 Dec; 54(24):12002-18. PubMed ID: 26636830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relativistic complete active-space second-order perturbation theory with the four-component Dirac Hamiltonian.
    Abe M; Nakajima T; Hirao K
    J Chem Phys; 2006 Dec; 125(23):234110. PubMed ID: 17190550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab Initio Analysis of Metal-Ligand Bonding in An(COT)
    Ganguly G; Sergentu DC; Autschbach J
    Chemistry; 2020 Feb; 26(8):1776-1788. PubMed ID: 31930585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multireference calculations on the ground and lowest excited states and dissociation energy of LuF.
    Almeida NMS; Melin TRL; Wilson AK
    J Chem Phys; 2021 Jun; 154(24):244304. PubMed ID: 34241349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF3.
    Roos BO; Lindh R; Malmqvist PA; Veryazov V; Widmark PO; Borin AC
    J Phys Chem A; 2008 Nov; 112(45):11431-5. PubMed ID: 18928264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interatomic potentials for ground and excited states of Ar+He.
    Sharma AR; Weeks DE
    J Chem Phys; 2018 Nov; 149(19):194302. PubMed ID: 30466283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical spectroscopy study of the low-lying electronic states of UX and UX(+), X = F and Cl.
    Bross DH; Peterson KA
    J Chem Phys; 2015 Nov; 143(18):184313. PubMed ID: 26567668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the actinide-actinide bond: theoretical studies of the chemical bond in Ac2, Th2, Pa2, and U2.
    Roos BO; Malmqvist PA; Gagliardi L
    J Am Chem Soc; 2006 Dec; 128(51):17000-6. PubMed ID: 17177451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin-orbit and relativistic all-electron potential energy curves for the ground and low-lying excited states of AgAu.
    Alizadeh D; Jamshidi Z; Shayesteh A
    Phys Chem Chem Phys; 2013 Nov; 15(42):18678-87. PubMed ID: 24085333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relativistic calculations of ground and excited states of LiYb molecule for ultracold photoassociation spectroscopy studies.
    Gopakumar G; Abe M; Das BP; Hada M; Hirao K
    J Chem Phys; 2010 Sep; 133(12):124317. PubMed ID: 20886942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ground-state actinide chemistry with scalar-relativistic multiconfiguration pair-density functional theory.
    Adeyiga O; Suleiman O; Dandu NK; Odoh SO
    J Chem Phys; 2019 Oct; 151(13):134102. PubMed ID: 31594337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of bond distances and dissociation energies of actinide oxides AnO and AnO2.
    Kovács A; Pogány P; Konings RJ
    Inorg Chem; 2012 Apr; 51(8):4841-9. PubMed ID: 22471700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New relativistic ANO basis sets for transition metal atoms.
    Roos BO; Lindh R; Malmqvist PA; Veryazov V; Widmark PO
    J Phys Chem A; 2005 Jul; 109(29):6575-9. PubMed ID: 16834004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron correlation and relativistic effects in atomic structure calculations of the thorium atom.
    Roy SK; Prasad R; Chandra P
    J Chem Phys; 2011 Jun; 134(23):234302. PubMed ID: 21702551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ab initio theoretical study of the electronic structure of UO2(+) and [UO2(CO3)3]5-.
    Ruipérez F; Danilo C; Réal F; Flament JP; Vallet V; Wahlgren U
    J Phys Chem A; 2009 Feb; 113(8):1420-8. PubMed ID: 19182969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of relativistic density functional methods applied to actinide species AcO(2)(2+) and AcF(6) for Ac = U, Np.
    García-Hernández M; Lauterbach C; Krüger S; Matveev A; Rösch N
    J Comput Chem; 2002 Jun; 23(8):834-46. PubMed ID: 12012360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.