These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28049303)

  • 1. Anomalous dielectric relaxation with linear reaction dynamics in space-dependent force fields.
    Hong T; Tang Z; Zhu H
    J Chem Phys; 2016 Dec; 145(24):244105. PubMed ID: 28049303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations.
    Henry BI; Langlands TA; Wearne SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031116. PubMed ID: 17025603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous subdiffusion with multispecies linear reaction dynamics.
    Langlands TA; Henry BI; Wearne SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021111. PubMed ID: 18351991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous nonlinear dielectric and Kerr effect relaxation steady state responses in superimposed ac and dc electric fields.
    Coffey WT; Kalmykov YP; Titov SV
    J Chem Phys; 2007 Feb; 126(8):084502. PubMed ID: 17343453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations.
    Chechkin AV; Gorenflo R; Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046129. PubMed ID: 12443281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous dielectric relaxation in strong ac external fields.
    Déjardin JL; Jadzyn J
    J Chem Phys; 2005 Nov; 123(17):174502. PubMed ID: 16375541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic models for dielectric relaxation in disordered systems.
    Kalmykov YP; Coffey WT; Crothers DS; Titov SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041103. PubMed ID: 15600393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractional rotational diffusion of rigid dipoles in an asymmetrical double-well potential.
    Coffey WT; Kalmykov YP; Titov SV; Vij JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011103. PubMed ID: 16089933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Turing pattern formation in fractional activator-inhibitor systems.
    Henry BI; Langlands TA; Wearne SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026101. PubMed ID: 16196638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial effects in the anomalous dielectric relaxation of rotators in space.
    Coffey WT; Kalmykov YP; Titov SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051105. PubMed ID: 12059527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectric Polarization and Electric Displacement in Polar-Molecule Reactions.
    Huang K; Hong T
    J Phys Chem A; 2015 Aug; 119(33):8898-902. PubMed ID: 26218627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights.
    Chechkin AV; Gonchar VY; Gorenflo R; Korabel N; Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021111. PubMed ID: 18850790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractional Fokker-Planck subdiffusion in alternating force fields.
    Heinsalu E; Patriarca M; Goychuk I; Hänggi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041137. PubMed ID: 19518203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractional dynamics and nonlinear harmonic responses in dielectric relaxation of disordered liquids.
    Déjardin JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):031108. PubMed ID: 14524751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time Fractional Fisher-KPP and Fitzhugh-Nagumo Equations.
    Angstmann CN; Henry BI
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subdiffusion-reaction processes with A→B reactions versus subdiffusion-reaction processes with A+B→B reactions.
    Kosztołowicz T; Lewandowska KD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032136. PubMed ID: 25314424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MESOSCOPIC MODELING OF STOCHASTIC REACTION-DIFFUSION KINETICS IN THE SUBDIFFUSIVE REGIME.
    Blanc E; Engblom S; Hellander A; Lötstedt P
    Multiscale Model Simul; 2016; 14(2):668-707. PubMed ID: 29046618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous reaction-diffusion equations for linear reactions.
    Lawley SD
    Phys Rev E; 2020 Sep; 102(3-1):032117. PubMed ID: 33076018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cattaneo-type subdiffusion-reaction equation.
    Kosztołowicz T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042151. PubMed ID: 25375482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractional chemotaxis diffusion equations.
    Langlands TA; Henry BI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051102. PubMed ID: 20866180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.