These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 28049317)
1. Spectral assignment and orientational analysis in a vibrational sum frequency generation study of DPPC monolayers at the air/water interface. Feng RJ; Li X; Zhang Z; Lu Z; Guo Y J Chem Phys; 2016 Dec; 145(24):244707. PubMed ID: 28049317 [TBL] [Abstract][Full Text] [Related]
2. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. Roy S; Gruenbaum SM; Skinner JL J Chem Phys; 2014 Nov; 141(18):18C502. PubMed ID: 25399167 [TBL] [Abstract][Full Text] [Related]
3. Interactions of dimethylsulfoxide with a dipalmitoylphosphatidylcholine monolayer studied by vibrational sum frequency generation. Chen X; Allen HC J Phys Chem A; 2009 Nov; 113(45):12655-62. PubMed ID: 19751059 [TBL] [Abstract][Full Text] [Related]
4. Vibrational sum frequency generation spectroscopic investigation of the interaction of thiocyanate ions with zwitterionic phospholipid monolayers at the air-water interface. Viswanath P; Aroti A; Motschmann H; Leontidis E J Phys Chem B; 2009 Nov; 113(44):14816-23. PubMed ID: 19824633 [TBL] [Abstract][Full Text] [Related]
5. The interaction of chondroitin sulfate with a lipid monolayer observed by using nonlinear vibrational spectroscopy. Szekeres GP; Krekic S; Miller RL; Mero M; Pagel K; Heiner Z Phys Chem Chem Phys; 2021 Jun; 23(23):13389-13395. PubMed ID: 34105546 [TBL] [Abstract][Full Text] [Related]
6. DPPC Langmuir monolayer at the air-water interface: probing the tail and head groups by vibrational sum frequency generation spectroscopy. Ma G; Allen HC Langmuir; 2006 Jun; 22(12):5341-9. PubMed ID: 16732662 [TBL] [Abstract][Full Text] [Related]
7. Effect of deuteration on a phosphatidylcholine lipid monolayer structure: New insights from vibrational sum-frequency generation spectroscopy. Navakauskas E; Niaura G; Strazdaite S Colloids Surf B Biointerfaces; 2022 Dec; 220():112866. PubMed ID: 36174490 [TBL] [Abstract][Full Text] [Related]
8. Solvation of Calcium-Phosphate Headgroup Complexes at the DPPC/Aqueous Interface. Hua W; Verreault D; Allen HC Chemphyschem; 2015 Dec; 16(18):3910-5. PubMed ID: 26486616 [TBL] [Abstract][Full Text] [Related]
9. Vibrational Sum Frequency Generation by the Quadrupolar Mechanism at the Nonpolar Benzene/Air Interface. Matsuzaki K; Nihonyanagi S; Yamaguchi S; Nagata T; Tahara T J Phys Chem Lett; 2013 May; 4(10):1654-8. PubMed ID: 26282974 [TBL] [Abstract][Full Text] [Related]
10. New insights into lung surfactant monolayers using vibrational sum frequency generation spectroscopy. Ma G; Allen HC Photochem Photobiol; 2006; 82(6):1517-29. PubMed ID: 16930094 [TBL] [Abstract][Full Text] [Related]
11. High-resolution and high-repetition-rate vibrational sum-frequency generation spectroscopy of one- and two-component phosphatidylcholine monolayers. Yesudas F; Mero M; Kneipp J; Heiner Z Anal Bioanal Chem; 2019 Jul; 411(19):4861-4871. PubMed ID: 30820629 [TBL] [Abstract][Full Text] [Related]
12. Na(+) and Ca(2+) effect on the hydration and orientation of the phosphate group of DPPC at air-water and air-hydrated silica interfaces. Casillas-Ituarte NN; Chen X; Castada H; Allen HC J Phys Chem B; 2010 Jul; 114(29):9485-95. PubMed ID: 20614879 [TBL] [Abstract][Full Text] [Related]
13. Determining in situ protein conformation and orientation from the amide-I sum-frequency generation spectrum: theory and experiment. Roeters SJ; van Dijk CN; Torres-Knoop A; Backus EH; Campen RK; Bonn M; Woutersen S J Phys Chem A; 2013 Jul; 117(29):6311-22. PubMed ID: 23566310 [TBL] [Abstract][Full Text] [Related]
14. Probing water and biomolecules at the air-water interface with a broad bandwidth vibrational sum frequency generation spectrometer from 3800 to 900 cm(-1). Ma G; Liu J; Fu L; Yan EC Appl Spectrosc; 2009 May; 63(5):528-37. PubMed ID: 19470209 [TBL] [Abstract][Full Text] [Related]
15. Organization of water and atmospherically relevant ions and solutes: vibrational sum frequency spectroscopy at the vapor/liquid and liquid/solid interfaces. Jubb AM; Hua W; Allen HC Acc Chem Res; 2012 Jan; 45(1):110-9. PubMed ID: 22066822 [TBL] [Abstract][Full Text] [Related]
16. Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface. Gan W; Wu D; Zhang Z; Feng RR; Wang HF J Chem Phys; 2006 Mar; 124(11):114705. PubMed ID: 16555908 [TBL] [Abstract][Full Text] [Related]
17. Glycerol Solvates DPPC Headgroups and Localizes in the Interfacial Regions of Model Pulmonary Interfaces Altering Bilayer Structure. Terakosolphan W; Trick JL; Royall PG; Rogers SE; Lamberti O; Lorenz CD; Forbes B; Harvey RD Langmuir; 2018 Jun; 34(23):6941-6954. PubMed ID: 29738253 [TBL] [Abstract][Full Text] [Related]
18. Unraveling tryptophan modulated 2D DPPC lattices: an approach toward stimuli responsiveness of the pulmonary surfactant. Sarangi NK; Patnaik A J Phys Chem B; 2011 Nov; 115(46):13551-62. PubMed ID: 21999639 [TBL] [Abstract][Full Text] [Related]
19. Sum frequency generation spectroscopic studies on phase transitions of phospholipid monolayers containing poly(ethylene oxide) lipids at the air-water interface. Ohe C; Goto Y; Noi M; Arai M; Kamijo H; Itoh K J Phys Chem B; 2007 Feb; 111(7):1693-700. PubMed ID: 17266350 [TBL] [Abstract][Full Text] [Related]
20. Identification of the response of protein N-H vibrations in vibrational sum-frequency generation spectroscopy of aqueous protein films. Meister K; Paananen A; Bakker HJ Phys Chem Chem Phys; 2017 May; 19(17):10804-10807. PubMed ID: 28265595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]