These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 28049339)
1. Relocking of intrinsic angular momenta in collisions of diatoms with ions: Capture of H Dashevskaya EI; Litvin I; Nikitin EE; Troe J J Chem Phys; 2016 Dec; 145(24):244315. PubMed ID: 28049339 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of ion-molecule complex formation at very low energies and temperatures. Nikitin EE; Troe J Phys Chem Chem Phys; 2005 Apr; 7(7):1540-51. PubMed ID: 19787980 [TBL] [Abstract][Full Text] [Related]
3. Rates of complex formation in collisions of rotationally excited homonuclear diatoms with ions at very low temperatures: application to hydrogen isotopes and hydrogen-containing ions. Dashevskaya EI; Litvin I; Nikitin EE; Troe J J Chem Phys; 2005 May; 122(18):184311. PubMed ID: 15918708 [TBL] [Abstract][Full Text] [Related]
4. Quantum effects in the capture of charged particles by dipolar polarizable symmetric top molecules. I. General axially nonadiabatic channel treatment. Auzinsh M; Dashevskaya EI; Litvin I; Nikitin EE; Troe J J Chem Phys; 2013 Aug; 139(8):084311. PubMed ID: 24007001 [TBL] [Abstract][Full Text] [Related]
5. Observation of enhanced rate coefficients in the H Allmendinger P; Deiglmayr J; Höveler K; Schullian O; Merkt F J Chem Phys; 2016 Dec; 145(24):244316. PubMed ID: 28049336 [TBL] [Abstract][Full Text] [Related]
6. Gyroscopic effect in low-energy classical capture of a rotating quadrupolar diatom by an ion. Dashevskaya E; Litvin I; Nikitin E J Phys Chem A; 2006 Mar; 110(9):2876-84. PubMed ID: 16509608 [TBL] [Abstract][Full Text] [Related]
7. Quantum scattering and adiabatic channel treatment of the low-energy and low-temperature capture of a rotating quadrupolar molecule by an ion. Dashevskaya EI; Litvin I; Nikitin EE; Troe J J Chem Phys; 2004 Jun; 120(21):9989-97. PubMed ID: 15268018 [TBL] [Abstract][Full Text] [Related]
8. Rotational relaxation of CS by collision with ortho- and para-H2 molecules. Denis-Alpizar O; Stoecklin T; Halvick P; Dubernet ML J Chem Phys; 2013 Nov; 139(20):204304. PubMed ID: 24289351 [TBL] [Abstract][Full Text] [Related]
9. Rotational excitation of HCN by para- and ortho-H₂. Vera MH; Kalugina Y; Denis-Alpizar O; Stoecklin T; Lique F J Chem Phys; 2014 Jun; 140(22):224302. PubMed ID: 24929383 [TBL] [Abstract][Full Text] [Related]
10. Inelastic scattering matrix elements for the nonadiabatic collision B(2P1/2)+H2(1Sigmag+,j)<-->B(2P3/2)+H2(1Sigmag+,j'). Weeks DE; Niday TA; Yang SH J Chem Phys; 2006 Oct; 125(16):164301. PubMed ID: 17092067 [TBL] [Abstract][Full Text] [Related]
11. Radiative charge transfer in He(+) + H2 collisions in the milli- to nano-electron-volt range: a theoretical study within state-to-state and optical potential approaches. Mrugała F; Kraemer WP J Chem Phys; 2013 Mar; 138(10):104315. PubMed ID: 23514497 [TBL] [Abstract][Full Text] [Related]
12. Rotational excitations in para-H2+para-H2 collisions: full- and reduced-dimensional quantum wave packet studies comparing different potential energy surfaces. Otto F; Gatti F; Meyer HD J Chem Phys; 2008 Feb; 128(6):064305. PubMed ID: 18282036 [TBL] [Abstract][Full Text] [Related]
13. Collision efficiency of water in the unimolecular reaction CH4 (+H2O) ⇆ CH3 + H (+H2O): one-dimensional and two-dimensional solutions of the low-pressure-limit master equation. Jasper AW; Miller JA; Klippenstein SJ J Phys Chem A; 2013 Nov; 117(47):12243-55. PubMed ID: 24144294 [TBL] [Abstract][Full Text] [Related]
15. Ultracold collisions of O(1D) and H2: the effects of H2 vibrational excitation on the production of vibrationally and rotationally excited OH. Pradhan GB; Balakrishnan N; Kendrick BK J Chem Phys; 2013 Apr; 138(16):164310. PubMed ID: 23635141 [TBL] [Abstract][Full Text] [Related]
16. Multipole-moment effects in ion-molecule reactions at low temperatures: part II - charge-quadrupole-interaction-induced suppression of the He Zhelyazkova V; Martins FBV; Žeško M; Merkt F Phys Chem Chem Phys; 2022 Feb; 24(5):2843-2858. PubMed ID: 35050290 [TBL] [Abstract][Full Text] [Related]
17. Rotational quenching of CO2 by collision with He atoms. Yang B; Stancil PC J Chem Phys; 2009 Apr; 130(13):134319. PubMed ID: 19355744 [TBL] [Abstract][Full Text] [Related]
18. Cross sections and low temperature rate coefficients for the H + CH+ reaction: a quasiclassical trajectory study. Halvick P; Stoecklin T; Larrégaray P; Bonnet L Phys Chem Chem Phys; 2007 Feb; 9(5):582-90. PubMed ID: 17242739 [TBL] [Abstract][Full Text] [Related]
19. [Vibrational and rotational excitation of CO2 in the collisional quenching of H2(v = 1)]. Zhang WJ; Feng L; Li JL; Liu J; Dai K; Shen YF Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jun; 34(6):1492-6. PubMed ID: 25358152 [TBL] [Abstract][Full Text] [Related]
20. Full-dimensional quantum dynamics of CO in collision with H2. Yang B; Balakrishnan N; Zhang P; Wang X; Bowman JM; Forrey RC; Stancil PC J Chem Phys; 2016 Jul; 145(3):034308. PubMed ID: 27448888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]