BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 28049393)

  • 1. Recent Patents on Nano-Enhanced Materials for Use in Thermal Energy Storage (TES).
    Ferrer G; Barreneche C; Solé A; Juliá JE; Cabeza LF
    Recent Pat Nanotechnol; 2017 Jul; 11(2):101-108. PubMed ID: 28049393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Energy Storage Using a Hybrid Composite Based on Technical-Grade Paraffin-AP25 Wax as a Phase Change Material.
    Nabwey HA; Tony MA
    Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal Energy Storage Using Phase Change Materials in High-Temperature Industrial Applications: Multi-Criteria Selection of the Adequate Material.
    Cabeza LF; Martínez FR; Borri E; Ushak S; Prieto C
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coconut shell-derived activated carbon-enhanced water phase change material for cold thermal energy storage.
    Sundaram P; Sathishkumar A; Liu J; Prabakaran R; Ganesh Kumar P; Pragathi P; Kim SC
    Environ Sci Pollut Res Int; 2024 Apr; ():. PubMed ID: 38607487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal Energy Storage Using Hybrid Nanofluid Phase Change Material (PCM) Based on Waste Sludge Incorp Rated ZnO/α-Fe
    Hassan EA; Tony MA; Awad MM
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in phase change materials and nanomaterials for applications in thermal energy storage.
    Kumar R; Thakur AK; Gupta LR; Gehlot A; Sikarwar VS
    Environ Sci Pollut Res Int; 2024 Jan; 31(5):6649-6677. PubMed ID: 38158531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Surface Functionalization and Physical Properties of Nanoinclusions on Thermal Conductivity Enhancement in an Organic Phase Change Material.
    Mishra AK; Lahiri BB; Philip J
    ACS Omega; 2018 Aug; 3(8):9487-9504. PubMed ID: 31459082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved solar still productivity using PCM and nano- PCM composites integerated energy storage.
    Murali G; Ramani P; Murugan M; Elumalai PV; Ranjan Goud NU; Prabhakar S
    Sci Rep; 2024 Jul; 14(1):15609. PubMed ID: 38971809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryogenic conditioning of microencapsulated phase change material for thermal energy storage.
    Trivedi GVN; Parameshwaran R
    Sci Rep; 2020 Oct; 10(1):18353. PubMed ID: 33110121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of blending of medium-temperature phase change material on the bitumen storage heat.
    Najemi L; Belyamani I; Bouya M
    Heliyon; 2023 Nov; 9(11):e22040. PubMed ID: 38027641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Waste-Energy Nexus: Cellulose Wood Chips Conjugated Metal Nanoparticles Based Phase Transformation for Improving Thermal Energy Storage Performance.
    Hassan EA; Tony MA
    Polymers (Basel); 2023 Nov; 15(21):. PubMed ID: 37959971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid energy-temperature method (HETM): A low-cost apparatus and reliable method for estimating the thermal capacity of solid-liquid phase change material for heat storage system.
    Firman OM; Rahmalina D; Ismail ; Rahman RA
    HardwareX; 2023 Dec; 16():e00496. PubMed ID: 38148971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NePCM Based on Silver Dispersions in Poly(Ethylene Glycol) as a Stable Solution for Thermal Storage.
    Marcos MA; Cabaleiro D; Hamze S; Fedele L; Bobbo S; Estellé P; Lugo L
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoencapsulation of Organic Phase Change Materials in Poly(3,4-Ethylenedioxythiophene) for Energy Storage and Conversion.
    Adam-Cervera I; Huerta-Recasens J; Gómez CM; Culebras M; Muñoz-Espí R
    Polymers (Basel); 2023 Dec; 16(1):. PubMed ID: 38201765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-100-nm Nearly Monodisperse n-Paraffin/PMMA Phase Change Nanobeads.
    Woo HY; Lee DW; Yoon TY; Kim JB; Chae JY; Paik T
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33466841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of porous carbon materials on heat storage performance of CaCl
    Gao N; Deng L; Li J; Zeng T; Huang H; Kobayashi N; Kubota M; Yang X
    RSC Adv; 2023 Oct; 13(46):32567-32581. PubMed ID: 37936641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoencapsulated phase change material in a trapezoidal prism wall under the magnetic field effect for energy storage purposes.
    Younis O; Abderrahmane A; Hatami M; Mourad A; Guedri K
    Sci Rep; 2023 Sep; 13(1):16060. PubMed ID: 37749273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-objective optimization of multiple droplet impacts on a molten PCM using NSGA-II optimizer and artificial neural network.
    Faghiri S; Poureslami P; Partovi Aria H; Shafii MB
    Sci Rep; 2023 Jun; 13(1):10543. PubMed ID: 37386232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a new methodology for validating thermal storage media: Application to phase change materials.
    Bayón R; Rojas E
    Int J Energy Res; 2019 Oct; 43(12):6521-6541. PubMed ID: 32684661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shell-Driven Localized Oxide Nanoparticles Determine the Thermal Stability of Microencapsulated Phase Change Material.
    Jeem M; Ishida R; Kondo M; Shimizu Y; Kawaguchi T; Dong K; Kurniawan A; Kunisada Y; Sakaguchi N; Nomura T
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):3509-3519. PubMed ID: 38225735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.