BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 28049858)

  • 1. High-Throughput Phenotyping of Maize Leaf Physiological and Biochemical Traits Using Hyperspectral Reflectance.
    Yendrek CR; Tomaz T; Montes CM; Cao Y; Morse AM; Brown PJ; McIntyre LM; Leakey AD; Ainsworth EA
    Plant Physiol; 2017 Jan; 173(1):614-626. PubMed ID: 28049858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique contributions of chlorophyll and nitrogen to predict crop photosynthetic capacity from leaf spectroscopy.
    Wang S; Guan K; Wang Z; Ainsworth EA; Zheng T; Townsend PA; Li K; Moller C; Wu G; Jiang C
    J Exp Bot; 2021 Feb; 72(2):341-354. PubMed ID: 32937655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput field phenotyping using hyperspectral reflectance and partial least squares regression (PLSR) reveals genetic modifications to photosynthetic capacity.
    Meacham-Hensold K; Montes CM; Wu J; Guan K; Fu P; Ainsworth EA; Pederson T; Moore CE; Brown KL; Raines C; Bernacchi CJ
    Remote Sens Environ; 2019 Sep; 231():111176. PubMed ID: 31534277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput characterization, correlation, and mapping of leaf photosynthetic and functional traits in the soybean (Glycine max) nested association mapping population.
    Montes CM; Fox C; Sanz-Sáez Á; Serbin SP; Kumagai E; Krause MD; Xavier A; Specht JE; Beavis WD; Bernacchi CJ; Diers BW; Ainsworth EA
    Genetics; 2022 May; 221(2):. PubMed ID: 35451475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral Phenotyping of Physiological and Anatomical Leaf Traits Related with Maize Water Status.
    Cotrozzi L; Peron R; Tuinstra MR; Mickelbart MV; Couture JJ
    Plant Physiol; 2020 Nov; 184(3):1363-1377. PubMed ID: 32907885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using leaf optical properties to detect ozone effects on foliar biochemistry.
    Ainsworth EA; Serbin SP; Skoneczka JA; Townsend PA
    Photosynth Res; 2014 Feb; 119(1-2):65-76. PubMed ID: 23657827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A leaf-level spectral library to support high-throughput plant phenotyping: predictive accuracy and model transfer.
    Wijewardane NK; Zhang H; Yang J; Schnable JC; Schachtman DP; Ge Y
    J Exp Bot; 2023 Aug; 74(14):4050-4062. PubMed ID: 37018460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting biochemical acclimation of leaf photosynthesis in soybean under in-field canopy warming using hyperspectral reflectance.
    Kumagai E; Burroughs CH; Pederson TL; Montes CM; Peng B; Kimm H; Guan K; Ainsworth EA; Bernacchi CJ
    Plant Cell Environ; 2022 Jan; 45(1):80-94. PubMed ID: 34664281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopy outperforms leaf trait relationships for predicting photosynthetic capacity across different forest types.
    Yan Z; Guo Z; Serbin SP; Song G; Zhao Y; Chen Y; Wu S; Wang J; Wang X; Li J; Wang B; Wu Y; Su Y; Wang H; Rogers A; Liu L; Wu J
    New Phytol; 2021 Oct; 232(1):134-147. PubMed ID: 34165791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond greenness: Detecting temporal changes in photosynthetic capacity with hyperspectral reflectance data.
    Barnes ML; Breshears DD; Law DJ; van Leeuwen WJD; Monson RK; Fojtik AC; Barron-Gafford GA; Moore DJP
    PLoS One; 2017; 12(12):e0189539. PubMed ID: 29281709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting photosynthetic capacity in tobacco using shortwave infrared spectral reflectance.
    Sexton T; Sankaran S; Cousins AB
    J Exp Bot; 2021 May; 72(12):4373-4383. PubMed ID: 33735372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat.
    Silva-Perez V; Molero G; Serbin SP; Condon AG; Reynolds MP; Furbank RT; Evans JR
    J Exp Bot; 2018 Jan; 69(3):483-496. PubMed ID: 29309611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput analysis of leaf physiological and chemical traits with VIS-NIR-SWIR spectroscopy: a case study with a maize diversity panel.
    Ge Y; Atefi A; Zhang H; Miao C; Ramamurthy RK; Sigmon B; Yang J; Schnable JC
    Plant Methods; 2019; 15():66. PubMed ID: 31391863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperspectral reflectance-based phenotyping for quantitative genetics in crops: Progress and challenges.
    Grzybowski M; Wijewardane NK; Atefi A; Ge Y; Schnable JC
    Plant Commun; 2021 Jul; 2(4):100209. PubMed ID: 34327323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excised leaves show limited and species-specific effects on photosynthetic parameters across crop functional types.
    Ferguson JN; Jithesh T; Lawson T; Kromdijk J
    J Exp Bot; 2023 Nov; 74(21):6662-6676. PubMed ID: 37565685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal responses of photosynthetic parameters in maize and sunflower and their relationship with leaf functional traits.
    Miner GL; Bauerle WL
    Plant Cell Environ; 2019 May; 42(5):1561-1574. PubMed ID: 30604429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of leaf temperature on the estimation of photosynthetic and other traits of wheat leaves from hyperspectral reflectance.
    Khan HA; Nakamura Y; Furbank RT; Evans JR
    J Exp Bot; 2021 Feb; 72(4):1271-1281. PubMed ID: 33252664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of chlorophyll content based on optical properties of maize leaves.
    Pan W; Cheng X; Du R; Zhu X; Guo W
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 309():123843. PubMed ID: 38215563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging.
    Meacham-Hensold K; Fu P; Wu J; Serbin S; Montes CM; Ainsworth E; Guan K; Dracup E; Pederson T; Driever S; Bernacchi C
    J Exp Bot; 2020 Apr; 71(7):2312-2328. PubMed ID: 32092145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of anatomical traits of maize (Zea mays L.) leaf as affected by nitrogen supply and leaf age on bundle sheath conductance.
    Retta M; Yin X; van der Putten PE; Cantre D; Berghuijs HN; Ho QT; Verboven P; Struik PC; Nicolaï BM
    Plant Sci; 2016 Nov; 252():205-214. PubMed ID: 27717455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.